
www.manaraa.com

An Approach for Adding Type-Safe Static-Context Duck Typing to an Object-

Oriented Programming Language

BY

Kevin Pond

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Engineering

South Dakota State University

2010

www.manaraa.com

UMI Number: 1486957

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 1486957

Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

ii

An Approach for Adding Type-Safe Static-Context Duck Typing to an Object-

Oriented Programming Language

This thesis is approved as a creditable and independent investigation by a

candidate for the Master of Science degree and is acceptable for meeting the

thesis requirements for this degree. Acceptance of this thesis does not imply that

the conclusions reached by the candidate are necessarily the conclusions of the

major department.

Dr. George Hamer
Thesis Advisor
Electrical Engineering and Computer Science

Date

Dr. Sung Shin
Graduate Program Coordinator
Electrical Engineering and Computer Science

Date

www.manaraa.com

iii

Dedication

To,

my friend,

Andold Thunk

may he rest in peace.

www.manaraa.com

iv

Abstract

An Approach for Adding Type-Safe Static-Context Duck Typing to an Object-

Oriented Programming Language

Kevin Pond

June 24, 2010

A practical approach for adding type-safe static-context duck typing to an

object-oriented programming language is proposed. This approach is suitable for

languages such as Java, C#, or Visual Basic.NET. Duck-typing is shown to

increase testability and flexibility by reducing type coupling. This approach is

implemented for .NET languages and the impact on reliability, tooling,

maintainability, and performance is compared to existing alternatives.

www.manaraa.com

v

Table of Contents

Chapter 1. Introduction ... 1

Chapter 2. Background ... 9

2.1. Wrapper Class ... 9

2.2. Duck Typing ... 11

2.2.1. Dynamic-Context Duck Typing .. 12

2.2.2. Static-Context Duck Typing ... 16

2.3. Dynamic Metaprogramming ... 22

Chapter 3. Design ... 27

3.1. Language Modification ... 27

3.2. Bytecode Rewriting .. 32

3.2.1. Novelty .. 36

3.3. .NET Implementation ... 36

3.3.1. Tools .. 36

3.3.2. Components .. 38

3.3.3. Example .. 40

Chapter 4. Analysis .. 46

4.1. Reliability .. 46

4.1.1. Variable Usage Error ... 46

www.manaraa.com

vi

4.1.2. Duck Compatibility Error .. 51

4.1.3. Logical Type Mismatch .. 57

4.1.4. Wrapper Class Implementation Error .. 58

4.1.5. Reliability Summary ... 59

4.2. Tooling ... 59

4.2.1. Tooling Based on Static Type Information ... 59

4.2.2. Segments/Breaks Existing Tooling .. 61

4.2.3. Increased Build Time ... 62

4.2.4. Tooling Summary .. 63

4.3. Maintainability .. 63

4.4. Performance .. 65

4.4.1. Virtual Method Calls .. 65

4.4.2. Call Site Interpretation ... 66

4.4.3. Run-Time Code Generation .. 66

4.4.4. Run-Time Type Checking .. 67

4.4.5. Empirical Results ... 68

4.4.6. Performance Summary .. 71

4.5. Summary .. 71

Chapter 5. Findings .. 73

www.manaraa.com

vii

5.1. Conclusions ... 73

5.1.1. Reliability ... 73

5.1.2. Maintainability .. 73

5.1.3. Tooling ... 73

5.1.4. Performance .. 74

5.1.5. Overall ... 76

5.2. Future Work ... 77

www.manaraa.com

viii

List of Tables

Table 4.1: Maintenance Cost from Lines of Code... 64

Table 4.2: Virtual Method Call Requirements ... 66

Table 4.3: Test Machine Details ... 68

Table 4.4: Call Performance ... 70

Table 4.5: Metaprogramming Duck Cast Performance 71

Table 4.6: Analysis Summary ... 72

Table 5.1: Call Performance ... 75

Table 5.2: Metaprogramming Duck Cast Performance 75

www.manaraa.com

ix

List of Figures

Figure 1.1: IFoo Interface ... 1

Figure 1.2: Foo Class ... 2

Figure 1.3: Raz and Baz Methods .. 3

Figure 1.4: Saz Class ... 6

Figure 2.1: SazWrapper Wrapper Class ... 10

Figure 2.2: Incorrect SazWrapper Wrapper Class .. 11

Figure 2.3: Dynamic-Context Duck Typing in Python ... 13

Figure 2.4: Dynamic-Context Duck Typing in Objective-C 14

Figure 2.5: Dynamic-Context Duck Typing in C# 4.0 .. 15

Figure 2.6: Static-Context Duck Typing in C++... 17

Figure 2.7: Static-Context Duck Typing in C++ Fails to Locate Methods Available

only at Run-Time .. 19

Figure 2.8: Logical Incongruity using Static-Context Duck Typing in C++ 21

Figure 2.9: dynamic_duck_cast Method and Example Usage 23

Figure 2.10: Logical Incongruity using dynamic_duck_cast (Java or C# like

language) ... 25

Figure 3.1: Language Modification (Java or C# like language) 28

Figure 3.2: static_duck_cast Method .. 33

Figure 3.3: Hello World in CIL (abridged) ... 37

Figure 3.4: DuckTyping.Contracts .. 39

Figure 3.5: Source Code of Third-Party Library Containing Saz (C# language) . 41

www.manaraa.com

x

Figure 3.6: Example Input Program (C# language) .. 41

Figure 3.7: CIL Listing of Main method within Figure 3.6 before Transformation 42

Figure 3.8: Generated DuckProxy_Saz Wrapper Class (C# Language) (abridged)

 ... 43

Figure 3.9: CIL Listing of Main method within Figure 3.6 after Transformation .. 44

Figure 3.10: Listing of Main Method within Figure 3.6 after Transformation (C#

Language) .. 44

Figure 3.11: Bytecode Rewriting Data Flow ... 45

Figure 4.1: Incorrect Variable Usage with Wrapper Class (C# Language) 47

Figure 4.2: Incorrect Variable Usage with Dynamic-Context Duck Typing (C#

Language) .. 47

Figure 4.3: Incorrect Variable Usage with Static-Context Duck Typing (C++

Language) .. 49

Figure 4.4: Incorrect Variable Usage with Metaprogramming (C# Language) 49

Figure 4.5: Incorrect Variable Usage with Language Modification 50

Figure 4.6: Incorrect Variable Usage with Bytecode Rewriting (C# Language) .. 51

Figure 4.7: Duck Incompatibility with Wrapper Class (C# Language) 52

Figure 4.8: Duck Incompatibility with Dynamic-Context Duck Typing (C#

Language) .. 53

Figure 4.9: Duck Incompatibility with Static-Context Duck Typing (C++ Language)

 ... 54

Figure 4.10: Duck Incompatibility with Metaprogramming (C# Language) 55

www.manaraa.com

xi

Figure 4.11: Duck Incompatibility with Language Modification 55

Figure 4.12: Duck Incompatibility with Bytecode Rewriting (C# Language) 56

Figure 4.13: Ineffective Static Type Information (C++ Language) 60

Figure 4.14: Ambiguous Rename (C++ Language) .. 62

www.manaraa.com

1

Chapter 1. Introduction

Many object-oriented programming languages support the concept of

interfaces. Interfaces allow the programmer to define a set of methods that

correspond to some capability. An interface defines a set of methods that must

be supported by classes that implement the interface, but it does not define how

these methods are implemented. Interfaces can contain methods, but they

cannot contain fields that store state.

Figure 1.1 defines an interface named IFoo (the I prefix is a common

naming convention used to signify an interface). IFoo defines one member—a

method named Bar. The signature of Bar is defined by the interface, but the

implementation is not. If a class wishes to implement IFoo, it must define an

implementation for all members of the interface and mark that the class

implements the interface.

IFoo should be thought of as a capability. A class that implements IFoo

supports the IFoo capability. A class that implements an interface like

IComparable would support comparison operations.

Some programming languages use the term protocol instead of interface,

since interfaces define an allowed set of interactions between components. In

interface IFoo

{

 void Bar();

}

Figure 1.1: IFoo Interface

www.manaraa.com

2

some programming languages, such as Java, Objective-C, and C#, interfaces

are supported directly with an explicitly defined syntax for the creation of

interfaces. In other languages, such as C++, no special syntax exists for

interfaces, but they can still be created by defining a class consisting only of pure

virtual functions.

A class can be marked as an implementor of one or more interfaces. For

example, consider Figure 1.2. Notice that Foo explicitly marks itself as an

implementation of IFoo and IComparable. Foo also defines an implementation

for all members found within IFoo (i.e. the Bar method) and IComparable (i.e. the

CompareTo method). If Foo did not implement all the members defined within

IFoo and IComparable, this would be an invalid program.

The same interface may be defined by multiple classes. Each class can

define its own implementation of the interface. For example a program might

define an ISerializable interface specifying methods for loading and saving an

object from a stream. Several classes could implement ISerializable, but the

class Foo : IFoo, IComparable

{

 void Bar()

 {

 /* implementation of Bar */

 }

 int CompareTo(object other)

 {

 /* implementation of CompareTo */

 }

}

Figure 1.2: Foo Class

www.manaraa.com

3

details of how to perform serialization could vary based on the structure of each

implementor.

Interfaces are abstract types. Abstract types cannot be instantiated

directly; instead they define the protocol that is supported by all implementors.

Obtaining a reference to an interface type requires instantiating an implementor

of the interface and assigning this instance to the interface reference. We can

create instances of Foo and assign them to a reference variable of type IFoo, but

we cannot create an instance of IFoo itself since IFoo does not specify an

implementation. That requires an implementor, which in this case is Foo.

Since Foo implements IFoo, instances of Foo can be used wherever

instances of a class implementing IFoo is expected without type error (1). In this

way interfaces behave like base classes. In Figure 1.3, both Baz and Raz accept

a parameter named foo. This parameter is known as a collaborator or

dependency. A collaborator helps another unit complete its task. Likewise, since

Baz and Raz cannot do their work without foo, they could be considered

dependent of foo. In other words, foo is a dependency of Baz and Raz.

In both Baz and Raz the caller is required to specify the dependency

supplied for foo. Alternatively these methods could create their own

dependencies. In effect the Baz and Raz methods ask the caller for their

dependencies, instead of looking for or creating their own. When dependencies

void Baz(IFoo foo) { /* implementation of Baz */ }

void Raz(Foo foo) { /* implementation of Raz */ }

Figure 1.3: Raz and Baz Methods

www.manaraa.com

4

are provided by the caller, this is known as dependency injection or inversion of

control. Dependency injection greatly improves the flexibility of software

systems. Components that control the creation of their own dependencies fix the

set of dependencies allowed to those created by the component itself. The

scoping and lifetime of these dependencies are also fixed by the component.

When a component uses dependency injection, the control of both what the

dependency is and its scope and lifetime are controlled by the caller. This

means that the same component can potentially be reused by many callers each

having vastly different requirements. Each caller simply provides the

dependencies it needs (2).

Baz can accept an instance of any type that implements the IFoo interface

for the foo parameters. This means that the Baz method can collaborate with

any implementor of IFoo. If a class that implements IFoo is later defined, Baz will

be able to accept instances of this class as a parameter to foo without

modification.

Raz by contrast can only collaborate with Foo or one of its subclasses.

While subclassing certainly is a mechanism for extensibility, it has limitations.

Many programming languages only support inheritance from a single base class,

limiting extensibility to a single type hierarchy. In the example of Raz, only

classes in a single hierarchy (the one that inherits from Foo) are suitable as a

collaborator for the foo parameter. Even in languages that support multiple

www.manaraa.com

5

inheritance issues such as the diamond problem may discourage its use.

Sometimes a class will not allow subclassing at all.

Within a system, the degree to which components are aware of each other

is known as coupling. Components that have a high degree of awareness of

each other are tightly coupled, whereas components with a low degree of

awareness are loosely coupled. Loose coupling is widely acknowledged as a

characteristic of well designed systems. The Baz method above is loosely

coupled to Foo. Neither Baz nor Foo is aware of the other—they share only the

definition of the interface used to communicate between them.

Loose coupling enables code reuse. Existing components can gain new

features and abilities by swapping out existing dependencies with new

dependencies that implement the new capability. The original component can be

reused. This enables programs that can support new features after they are

written. A program can be extended or customized by someone other than the

original author without modifying the original program.

Loose coupling also creates systems that are testable. A system is

testable when a small part of the program can be ran and tested independently of

the rest of the program. When a program is tightly coupled, running any

component requires also running all of its dependencies. This makes testing

difficult because many different components need to be tested together.

Sometimes dependencies are slow, complex, difficult to setup, or have side-

www.manaraa.com

6

effects that are undesirable for testing. With loose coupling these dependencies

can easily be replaced by lightweight mock dependencies.

In Figure 1.4, Saz implements all the members defined on IFoo, however

it does not explicitly mark itself as an implementation of IFoo. Instances of Saz

therefore are not suitable for the foo parameter of Baz. Languages often require

that classes explicitly mark their supported interfaces to avoid the risk that

logically unrelated methods will inadvertently become correlated simply by virtue

of their signatures matching. It is possible that the Bar method in Saz is logically

unrelated to the Bar method defined in IFoo, even though their signatures do

match and Saz implements all the members of IFoo. If the programmer that

defined IFoo is also the author of Saz, there is little concern. The compiler would

quickly make the programmer aware of his mistake. If Saz is logically related to

IFoo, the programmer will then mark Saz as an implementor of IFoo and

recompile.

A more difficult problem arises if Saz was defined within a third-party

library. Software development projects often utilize libraries created by third-

parties. These libraries are often presented as compiled binaries with no source

class Saz

{

 void Bar()

 {

 /* implementation of Bar */

 }

}

Figure 1.4: Saz Class

www.manaraa.com

7

code provided. If the Saz class were defined within such a library, a third-party

programmer could not mark that Saz implements his IFoo interface.

This becomes a serious issue when writing the Baz method. Although an

instance of Saz could be otherwise suitable for the foo parameter, the fact that it

is not and cannot be marked as an implementation of IFoo means that instances

of Saz are unsuitable for the Baz method.

Despite the well known advantages of loose coupling that can be achieved

by interfaces, many library authors are reluctant to use them extensively. The

essential problem with interfaces for library implementors is versioning. As soon

as a library using interfaces is published, third-party users may start

implementing the interfaces in their own classes. When the next version of the

library is released, any new methods added to an interface will break users of the

library since classes implementing the interface will not support the new

methods. This means that interfaces are essentially immutable when defined by

authors of libraries used by third-party programmers.

Objective:

Loose coupling between types using interfaces provides flexible, testable,

and extensible systems, but classes defined within third-party libraries frequently

do not support interfaces because of versioning issues and cannot be modified

because they are distributed in binary form. We will develop an approach that

provides loose coupling to third-party libraries without reducing reliability,

maintainability, tooling support, or performance.

www.manaraa.com

8

Course of Action:

The existing approaches for solving this problem will be examined. A

practical approach for adding type-safe static-context duck typing to an object-

oriented programming language based on bytecode rewriting will be proposed.

This approach should provide excellent reliability, tooling, maintainability, and

performance.

www.manaraa.com

9

Chapter 2. Background

Tight coupling does not allow the flexibility required for testable and

extensible systems. When code is coupled directly, collaboration is restricted to

a single type hierarchy, or in the case of classes that prohibit subclassing, to

exactly one class. This greatly limits our ability to support new capabilities or

swap out implementations with mock implementations for testing. Programmers

end up writing tightly coupled code simply because it is typically the path of least

resistance within a statically typed programming language.

In the following sections, well known techniques for achieving loose

coupling are examined in detail. These techniques attempt to solve the problem

outlined in the first chapter. We will examine the tradeoffs involved with each

approach.

2.1. Wrapper Class

A wrapper class is a class that delegates calls to an internal object

instance, possibly of a different type. A wrapper class can implement an

interface by simply delegating calls to an instance of another class that does not

implement the interface. For example, Figure 2.1 shows how we could define a

wrapper class called SazWrapper that allows loose coupling with the Saz class

defined in Figure 1.4. Since SazWrapper implements IFoo, instances can be

passed as a collaborator to Baz. Internally SazWrapper holds a reference to an

instance of Saz. Calls on SazWrapper simply delegate to the implementation on

www.manaraa.com

10

Saz. This approach allows the loose coupling and extensibility of interfaces and

the ability to reuse third-party classes while maintaining loose coupling.

Since SazWrapper implements IFoo, instances can be passed as a

collaborator to Baz. Internally SazWrapper holds a reference to an instance of

Saz. Calls on SazWrapper simply delegate to the implementation on Saz.

Wrapper classes eliminate the coupling problem, but they add

maintainability and writability problems. The number of types within a system

can dramatically increase when using wrapper classes. Large programs could

reference hundreds of third-party classes, each requiring a wrapper class. Each

of these wrapper classes must be written and maintained. The code within these

wrapper classes does not add any new functionality to the software, it really only

exists to satisfy the compiler. The sole purpose of the SazWrapper class in

Figure 2.1 is to convince the compiler that it is acceptable to use instances of

Saz as an implementation of IFoo.

Since wrapper classes must be manually created, implementation errors

can lead to reliability problems. For example imagine that SazWrapper had

instead been implemented as shown in Figure 2.2. The programmer forgot to

class SazWrapper : IFoo

{

 Saz _saz;

 SazWrapper(Saz saz) { _saz = saz; }

 void Bar() { _saz.Bar(); }

}

Figure 2.1: SazWrapper Wrapper Class

www.manaraa.com

11

delegate the call to Bar to the implementor _saz. In general these kinds of errors

cannot be detected by the compiler when wrapper classes are created manually.

Wrapper classes allow excellent tooling support. Code completion editors

and refactoring tools will work with wrapper classes. Since wrapper classes are

no different than any other class defined within an application, code editors can

provide helpful code completion hints and refactoring tools will correctly rename

symbols defined within the wrapper classes.

Wrapper classes will have a minor impact on performance. The wrapper

classes themselves will increase the code space required for an application. A

small amount of extra memory usage will be required for the wrapper class

instance. Calls through a wrapper class will also incur the run-time overhead of

an additional virtual method call. This overhead is probably insignificant for most

applications and hardware configurations.

2.2. Duck Typing

Another possibility is to consider an alternative typing strategy known as

duck typing. Duck typing is named after the duck test (3). The duck test states:

“If it looks like a duck, swims like a duck, and quacks like a duck, then it probably

class SazWrapper : IFoo

{

 Saz _saz;

 SazWrapper(Saz saz) { _saz = saz; }

 void Bar() { /* delegation to _saz forgotten */ }

}

Figure 2.2: Incorrect SazWrapper Wrapper Class

www.manaraa.com

12

is a duck.” Duck typing applies this concept to typing within a programming

language. With duck typing, type compatibility is determined by looking at the set

of methods defined on an object rather than the classes it inherits from or the

interfaces it implements.

Many programming languages have support for duck typing. Although

most commonly associated with dynamic typing, duck typing actually takes one

of two forms: static-context duck typing and dynamic-context duck typing.

2.2.1. Dynamic-Context Duck Typing

Dynamic-context duck typing involves determining at run-time whether a

given object supports the methods that are actually called. At the point of run-

time method invocation the variable is searched for a method matching the

caller's signature. If the method is found it is invoked, otherwise a run-time error

is thrown. Dynamically typed languages typically use dynamic-context duck

typing, but some statically typed languages have special syntax causing the

compiler to emit statements delaying the method binding until run-time.

Python's type system uses duck typing extensively. Figure 2.3

demonstrates Python's use of duck typing. Notice that the foo parameter to Baz

has no explicit type name. The type of foo does not matter. If the parameter

passed to foo has a Bar method it will be called, otherwise there will be an error.

www.manaraa.com

13

Objective-C supports both static and dynamic typing. Normally the type of

a variable is specified and typing is static, but the programmer may use the

keyword id in place of a type. This indicates that the variable uses dynamic

typing, and an object of any type may be assigned to it (4). Figure 2.4 shows an

example. Since we wish to employ dynamic-context duck typing within Baz, we

specify id as the type for the foo parameter. When Baz calls the Bar method on

foo, the run-time system determines if the object passed to Baz actually had a

Bar method. If it does then Bar is invoked; otherwise Baz will raise an exception

that will terminate the program unless correctly handled.

Dynamic-context duck typing is also possible with version 4.0 of C#.

Figure 2.5 shows an example within C#. C# uses the keyword dynamic to

indicate the object may be of any type and that it bypasses compile-time static

typing (5). As with Objective-C, C# also supports static typing. Both of these

languages intend for static typing to be used wherever possible, but enable

switching to dynamic typing when static typing proves too difficult, inflexible, or

inconvenient.

class Saz:

 def Bar(self):

 print("Saz.Bar()")

def Baz(foo):

 foo.Bar()

Baz(Saz())

Figure 2.3: Dynamic-Context Duck Typing in Python

www.manaraa.com

14

#import <Foundation/Foundation.h>

@interface Saz : NSObject

{

}

-(void) Bar;

@end

@implementation Saz

-(void) Bar {

 NSLog(@"[Saz Bar]");

}

@end

void Baz(id foo) {

 [foo Bar];

}

int main (int argc, const char * argv[]) {

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc]

init];

 Saz *saz = [[Saz alloc] init];

 Baz(saz);

 [saz release];

 [pool drain];

 return 0;

}

Figure 2.4: Dynamic-Context Duck Typing in Objective-C

www.manaraa.com

15

Dynamic-context duck typing is obviously extremely flexible. It is also

extremely dangerous. Even small mistakes, such as a mistyped method name

will not be discovered until run-time. It also means tools that depend on static

type information will be ineffective. Code completion editors will be unable to

offer hints, as the available methods will be unknown until run-time. Refactoring

tools will be unable to identify required changes within dynamically typed

variables. The loss of these features mean significant reduction in programmer

productivity.

With dynamic-context duck typing the Baz method can be written to

accept an object of any type. Only when Baz actually called the Bar method

would the run-time system actually determine if the object passed to Baz actually

using System;

class Saz

{

 public void Bar() { Console.WriteLine("Saz.Bar()"); }

}

class Program

{

 static void Baz(dynamic foo)

 {

 foo.Bar();

 }

 static void Main(string[] args)

 {

 Baz(new Saz());

 }

}

Figure 2.5: Dynamic-Context Duck Typing in C# 4.0

www.manaraa.com

16

had a Bar method. If the method did not exist on the object a run-time error

would occur.

Perhaps the biggest advantage of dynamic-context duck typing is the ease

at which loose coupling is achieved. In a language such as Python, no extra

work is required to achieve loose coupling. This makes components extremely

flexible and testable. Unfortunately since checks that would normally be

performed at compile-time in a statically typed language are delayed until run-

time many more tests are required.

2.2.2. Static-Context Duck Typing

Static-context duck typing applies the duck test given the type information

available at compile-time. C++ templates are a widely known example of static-

context duck typing (6). The compiler will check that all methods called from a

variable whose type is a template parameter are implemented by all types for

which the template is expanded.

In Figure 2.6, Baz is a function template. The type of Baz's foo parameter

is the type parameter T. Since a method named Bar is called off the foo

parameter, all types passed to Baz as the type parameter T must support a Bar

method. If Baz was passed a type that did not support a Bar method, a compile-

time error would result. Also notice that the supported signature allowed for the

Bar method is inferred by its usage and never explicitly defined. In the example

a Bar method that returned a value would also be valid.

www.manaraa.com

17

Dynamic-context duck typing is slightly more flexible than the static-

context duck typing within C++. With dynamic-context duck typing an object only

needs to implement those methods actually called at run-time. With C++ static-

context duck typing any method that might be called must be implemented, even

#include <iostream>

using namespace std;

// C++ interfaces are classes with no fields

// and only pure-virtual (abstract) methods

class IFoo

{

public:

 virtual void Bar() = 0;

};

class Saz

{

public:

 void Bar()

 {

 cout << "Saz::Bar()" << endl;

 }

};

template<typename T>

void Baz(T &foo)

{

 foo.Bar();

}

int main()

{

 Saz s;

 Baz<Saz>(s);

 return 0;

}

Figure 2.6: Static-Context Duck Typing in C++

www.manaraa.com

18

if that method does not get called at run-time. Additionally types unknown at

compile time are unavailable.

Dynamic-context duck typing is slightly more flexible than the static-

context duck typing within C++. With dynamic-context duck typing an object only

needs to implement those methods actually called at run-time. With C++ static-

context duck typing any method that might be called must be implemented, even

if that method does not get called at run-time. Additionally types unknown at

compile time are unavailable.

In Figure 2.7, an instance of Yaz is created and assigned to w. So the

run-time type of w is Yaz but the compile-time type is Waz. Since the Waz class

does not define a suitable implementation of the Bar method, w cannot be

passed to the Baz method. If the checking was delayed until run-time, the Bar

method would be found.

www.manaraa.com

19

Static-context duck typing enjoys reliability and performance advantages

over dynamic-context duck typing. Since type checking is performed at compile-

time, a mistyped method name can easily be corrected at compile-time. With

dynamic-context duck typing, these errors might not occur until the user sees the

program crash. Since static-context duck typing allows the binding to occur at

#include <iostream>

using namespace std;

class Waz

{

};

class Yaz : public Waz

{

public:

 void Bar()

 {

 cout << "Yaz::Bar()" << endl;

 }

};

template<typename T>

void Baz(T &foo)

{

 foo.Bar();

}

int main()

{

 Waz *w = new Yaz();

 Baz<Waz>(*w); // compiler-error

 delete w;

 return 0;

}

Figure 2.7: Static-Context Duck Typing in C++ Fails to Locate Methods Available only at Run-Time

www.manaraa.com

20

compile-time, there is less run-time performance overhead associated with the

method lookup.

Since C++ static duck typing syntax infers the typed requirements based

on usage it does have some limitations. Logical incongruities can happen if

unrelated types happen to support the same methods. In Figure 2.8, CreditCard

and Rhinoceros both have a Charge method, however they are completely

unrelated. The FinalizePurchase function accepts a type parameter T. Since

FinalizePurchase calls the Charge method off an instance of T, any parameter

for T must have a Charge method. FinalizePurchase is meant to finalize a credit

card transaction. No error will be reported if an instance of Rhinoceros is passed

to FinalizePurchase, even though it will not produce the desired effect.

www.manaraa.com

21

A related problem with the C++ static duck typing syntax is a lack of

sufficient compile time type information for tooling. Since literally any call could

be valid, code completion editors cannot possibly offer suggestions for variables

whose type is supplied as a template parameter. Similarly automatic refactoring

tools lack the type information needed to apply correct transformations. For

example, if the Charge method within the CreditCard class were renamed, the

class CreditCard {

public:

 void Charge() {} // withdraws money

};

class Rhinoceros {

public:

 void Charge() {} // runs toward foe

};

// Accepts any reference that has Charge method, with

// the idea that some credit card classes do not derive

// from CreditCard

template<typename T>

void FinalizePurchase(T &card) {

 card.Charge();

 /* other side effect of charging credit card */

}

int main() {

 CreditCard visa;

 Rhinoceros rhino;

 FinalizePurchase<CreditCard>(visa);

 // compiles, but produces unintended effect

 FinalizePurchase<Rhinoceros>(rhino);

 return 0;

}

Figure 2.8: Logical Incongruity using Static-Context Duck Typing in C++

www.manaraa.com

22

refactoring tool could not automatically infer that the call site within

FinalizePurchase should also be renamed. Lack of code completion and

refactoring tools significantly limit programmer productivity.

2.3. Dynamic Metaprogramming

Another way to solve the third-party library coupling problem within a

statically typed programming language is via a metaprogramming (7) (8). With

this approach program generates another dynamically linked program containing

the required wrapper classes at run-time. Essentially this approach is another

take on wrapper classes, but unlike the manually written wrapper classes from

section 2.1, the wrapper class generation is done automatically by a library at

run-time.

In Chapter 1, Baz required an instance of IFoo. Saz supports all the

methods defined on IFoo, but is not marked as an implementation of IFoo. Since

Saz is defined within a third-party for which we are provided only the binaries, we

cannot simply mark Saz as an implementor of IFoo and recompile. Instead we

call the dynamic_duck_cast function shown in Figure 2.9. This function

dynamically generates a wrapper class like the SazWrapper shown in Figure 2.1.

www.manaraa.com

23

Implementing dynamic_duck_cast requires several things. First we need

to dynamically examine the set of methods supported by obj. This requires some

kind of reflection. In other words, compile time metadata, such as the set of

methods defined on a type, must be made available at run-time. This feature can

be implemented manually, but is generally preferable if implemented by the

programming language itself. This provides better assurances that the metadata

will be available, accurate, and accessible in a standard way.

Since machine code is tied to a single machine architecture, any dynamic

code generation is either tied to a specific machine architecture or requires an

interpreted language. Alternatively, dynamically generated code can target a

virtual machine architecture, thereby supporting any physical architecture that the

virtual machine supports. Programming systems that run on a virtual machine

architecture often support dynamic code generation.

Languages such as Java or .NET programming languages support all the

features required to implement this metaprogramming implementation. Both

T dynamic_duck_cast<T>(object obj)

{

 // 1. dynamically examine the methods supported on obj

 // 2. determine if obj contains all methods defined on T

 // 2a. otherwise generate error

 // 3. generate a library containing a wrapper class

 // 4. create an instance of the wrapper passing in obj

 // 5. return the instance of the wrapper

}

Baz(dynamic_duck_cast<IFoo>(new Saz()));

Figure 2.9: dynamic_duck_cast Method and Example Usage

www.manaraa.com

24

have a rich metadata systems. Since both run on virtual machines, platform-

independent dynamic code generation is relatively easy. Both support dynamic

code loading and linking.

The metaprogramming approach is good for productivity and

maintainability. Since wrapper classes are generated automatically, programmer

productivity is increased and maintenance costs are decreased. There is much

less risk of errors within the wrapper class. Unlike the C++ syntax, duck types

are created based on a named interface so tools requiring static type information,

such as code completion editors and refactoring tools, are possible.

Unfortunately the metaprogramming approach suffers from poor reliability

and performance. Since the dynamic metaprogramming approach is an example

of dynamic-context duck typing, it has the reliability problems described in

section 2.2.1. If the type parameter T passed to dynamic_duck_cast is

incompatible with the object passed to obj, a run-time error will occur. In many

cases all the information required to prevent this error is available at compile-

time.

One advantage of this approach over the C++ syntax is that it suffers

much less from the problem of logical incongruities resulting from types that

happen to support the same methods. With the C++ approach, types could

accidentally support the implicit interface required on the type parameter. With

the metaprogramming approach the programmer is required to make an explicit

dynamic_duck_cast. Of course the programmer could still make the same

www.manaraa.com

25

mistake allowed by C++, but it would be much less likely because of the explicit

cast. Figure 2.10 shows dynamic_duck_cast using the credit card and

rhinoceros example from Figure 2.8.

interface ICreditCard {

 void Charge() {} // withdraws money

}

class CreditCard {

 void Charge() {} // withdraws money

};

class Rhinoceros {

 void Charge() {} // runs toward foe

};

void FinalizePurchase(ICreditCard card) {

 // full static type tooling now possible:

 // - rename on Charge is possible

 // - code completion for card is possible

 card.Charge();

}

int main() {

 CreditCard visa = new CreditCart();

 Rhinoceros rhino = new Rhinoceros();

 FinalizePurchase(dynamic_duck_cast<ICreditCard>(visa));

 // The following error is less likely than in C++. The

 // programmer must explicitly say that a Rhinoceros

 // is suitable as an implementor of ICreditCard.

 FinalizePurchase(

dynamic_duck_cast<ICreditCard>(rhino));

 return 0;

}

Figure 2.10: Logical Incongruity using dynamic_duck_cast (Java or C# like language)

www.manaraa.com

26

Since the metaprogramming dynamic-context duck typing approach

generates wrapper classes at run-time it can incur a significant overhead.

Although wrapper class types can be cached after their initial generation, each

call to dynamic_duck_cast with a new type parameter will cause new code to be

dynamically compiled. This approach also requires analysis of reflection

metadata at run-time to guarantee type compatibility. Even with caching of

wrapper class types this approach can cause noticeable delays during code

generation.

www.manaraa.com

27

Chapter 3. Design

As seen in the previous chapter there are many existing approaches that

achieve loose coupling to third-party libraries within object-oriented programming

languages, however these approaches suffer from reliability, tooling,

maintainability, and performance problems. Having examined several

approaches, we now design an approach that enables loose coupling between

components while still enabling high reliability, good tooling support, high

maintainability, and relatively good performance.

We describe two possible implementations for the design. The first,

language modification, is most suitable for language designers and implementors

and will be explained but not implemented. The second, bytecode rewriting, is

suitable as an extension to an existing language and will be explained and

implemented.

3.1. Language Modification

One approach for enabling loose coupling to third-party components is to

extend the language.

Figure 3.1 shows an example of a language extension that allows for

static-context duck typing by adding an asduck operator to the language. The

asduck operator has two parameters. The first is a variable reference that

precedes the asduck operator. The second parameter is an interface type name

that follows the operator. At compile time, the variable's compile time type is

www.manaraa.com

28

examined for duck compatibility. If class X implements all members defined on

interface Y, but X is not necessarily marked as an implementation of Y, then X is

duck compatible with Y. If the interface type parameter is not duck compatible

with the compile-time type of the variable a compile-time error occurs, otherwise

the operator simply returns an instance of the interface type parameter.

This language feature could be implemented by having the compiler

generate a wrapper class like SazWrapper shown in Figure 2.1. Unlike the

metaprogramming approach, language modification would not require run-time

reflection metadata. The wrapper classes are generated by the compiler, which

will have access to compile-time metadata even if this is not available at run-

time. Additionally this would not require generation of code at run-time, so a

virtual machine architecture or dynamic module loading would not be required.

interface IFoo {

 void Bar();

};

class Saz {

 void Bar() {}

};

void Baz(IFoo foo) {

 foo.Bar();

}

int main() {

 Saz s = new Saz();

 Baz(s asduck IFoo); // new asduck cast operator

 return 0;

}

Figure 3.1: Language Modification (Java or C# like language)

www.manaraa.com

29

These reduced requirements might make this approach more feasible for

languages without the required metadata and run-time code generation features.

Like the metaprogramming approach, language extension is good for

maintainability. Wrapper classes are automatically generated by the compiler, so

no programmer maintenance is required. The overall amount of code required to

achieve loose coupling is reduced. Generally with all other things being equal,

given two programs that have the same behavior the one that has less code will

be more maintainable because there is simply less code to maintain. Since

wrapper classes are automatically generated by the compiler the risk of

programmer error within these classes is greatly reduced.

The biggest advantage of the language modification approach is probably

reliability. Since duck compatibility is determined at compile-time, duck

compatibility errors cannot occur at run-time. This is a huge advantage over

dynamic-context duck typing. It is also a big advantage over the

metaprogramming approach where accidentally using a type that was not duck

compatible resulted in a run-time error. With language modification these errors

are detected earlier. It is generally accepted that detecting errors earlier

improves reliability.

The language modification approach is good for performance. The

overhead is equal to that of manually writing wrapper classes; that is, one extra

virtual method call for each duck type method invocation. Virtual method

invocations are certainly slower than non-virtual calls, but virtual method calls are

www.manaraa.com

30

much faster than the dynamic lookup typically required for dynamic-context duck

typing. Additionally since the wrapper classes are generated at compile time,

language modification does not incur the cost of determining duck type

compatibly and dynamic code generation at run-time.

Language modification as proposed here is an example of static-context

duck typing. As shown earlier static-context duck typing is slightly less flexible

than dynamic-context duck typing, but has better reliability. For most cases

static-context duck typing is flexible enough, and for those cases in which it is not

a programmer could use an existing language feature or library for dynamic-

context duck typing. Since static and dynamic context duck typing are not

mutually exclusive, this language modification is not less flexible than dynamic-

context duck typing; it is just more reliable whenever applicable.

Although the language modification approach enjoys the possibility of

tooling such as code completion editors and refactoring tools, any existing tooling

for a language would be broken causing frustration and reduced productivity for

programmers accustomed to such tooling. Of course these tools could be

updated, but the likelihood of this occurring depends on who makes the update.

If these language changes were made outside a controlling standards

body for the language, it would cause a branch in the language—essentially

creating a whole new language. This new language's evolution would then split

from the original. Any improvements made to the original language, compilers,

or tooling would either not be available to users of the new language or require a

www.manaraa.com

31

difficult, and perhaps unlikely, reunification. Programmers may fear these

extensions because of their potential to isolate the programmer from the larger

community of the original language.

Language modification is probably most suitable if designed by the group

controlling the language specification and implemented by the major compiler

vendors for the language. If designed and implemented at this level, the

language modifications would enjoy excellent tooling support. Future additions to

the language would also include the duck typing extensions. Compilers

themselves are complex pieces of software and making these language

modifications could be quite difficult.

Changing a programming language with a large user base is an incredibly

difficult task. Small changes in the language can have subtle and unanticipated

consequences. Adding new keywords might break existing programs that

happened to use that keyword for a variable name. Many compiler vendors will

need to update their compiler software. Tooling infrastructure will also require

modification. After release, an error in a language specification is difficult to

correct. Programs will have already been written against the flawed

specification, and simply correcting the flaw could break these programs.

Features added directly to a language can make the language more

difficult to understand. Even if a programmer is unaware of a new feature, he or

she might still encounter code written by other programmers that makes use of a

feature. At this point the programmer will probably need to study and understand

www.manaraa.com

32

this new feature. With every feature the amount of study required to master all

the language's features increases. While language features can improve the

ease of expressing ideas within the language, they also increase the time

required by programmers to fully understand the language. Since language

features are likely to be encountered by all users of a language, features only

useful to a subset of the language's community should probably be implemented

in libraries whenever possible.

Language extensions have some compelling advantages, but ultimately

they are only practical if designed by the body in control of the language.

3.2. Bytecode Rewriting

Another approach for supporting static-context duck typing is compile-time

metaprogramming or bytecode rewriting. Bytecode rewriting is a technique for

implementing features that would normally require language modification within a

library. Unlike the language modification implementation described in section

3.1, this approach is practical even if done outside the body controlling a

language.

Many languages have a relatively high-level bytecode instruction set. For

example Java and .NET define virtual machines supporting high-level instruction

sets. This bytecode serves as a machine independent intermediate language.

Language compilers targeting the virtual machine run-time output this bytecode

rather than machine code. At run-time the virtual machine takes the bytecode

instructions and compiles them to native machine code. For performance, native

www.manaraa.com

33

code can be cached to avoid re-compilation or interpretation costs for

subsequent calls. This process is known as just-in-time compilation and is

implemented on the primary virtual machines for both Java and .NET.

With bytecode rewriting a specially designed tool takes another program

as an input. The tool disassembles the input program, changes it in some way,

then reassembles the program as output. During this manipulation phase

custom features normally requiring compiler support can be implemented.

Although theoretically this technique could be employed for languages outputting

machine code directly, bytecode preserves just enough of the original code

structure to make this process much easier. The bytecode rewriter can easily

identify elements within the compiled source program that it wishes to modify.

On the surface this approach looks much like dynamic-context

metaprogramming. In fact the API as used by the programmer could look exactly

the same. The programmer has a library that allows him to request a duck for

some compatible interface type. Unlike the dynamic metaprogramming

approach, bytecode rewriting requires the the object's compile time type to be

duck compatible with the target interface type. The API might look something

like Figure 3.2.

TDestination

static_duck_cast<TDestination, TSource>(TSource source)

{

 throw error;

}

Figure 3.2: static_duck_cast Method

www.manaraa.com

34

Under the surface the bytecode rewriting approach is much different. A

program author that wishes to use duck typing within his project would need to

include the duck typing library. This is exactly the same as what would be

required with the dynamic metaprogramming approach, but the implementation

of this library is dramatically different. Unlike the implementation overviewed in

Figure 2.9, this library does nothing. The program built against the static duck

typing library may be compiled using any compiler targeting the bytecode format

supported by the bytecode rewriting tool. So a bytecode rewriting tool supporting

the Common Intermediate Language (CIL) bytecode format used by .NET could

rewrite programs written in C#, Visual Basic.NET, or any other .NET language.

After compilation of the source program, it is sent to the bytecode rewriting tool—

ideally as a post build operation.

The bytecode rewriting tool examines the input program looking for call

sites where a duck type is requested. When a call site is found the following

operations are performed:

1. Determine the members supported on instances of the source type

(TSource).

2. Determine the members required on instances of the destination

type (TDestination).

3. Determine if the source type contains compatible members for all

members on the destination type.

a. otherwise generate an error

www.manaraa.com

35

4. Generate a wrapper class implementing all members of

TDestination by delegation to the compatible member found on the

source type contained within the wrapper. Add this wrapper type to

the output program.

5. Modify all call sites to create a duck (e.g. static_duck_cast) to

create an instance of the generated wrapper class, passing the

source instance to the wrapper class.

6. Write out the modified program.

Although these steps are fairly similar to the dynamic metaprogramming

approach, there are a few important differences. First, all these steps are

performed as part of the build process. The steps required for dynamic

metaprogramming are performed at run-time. Second, since the bytecode

rewriting is performed at compile-time, the actual run-time members supported

on the instance of TSource supplied for the source parameter are not examined,

only the members defined on TSource are considered when checking for duck

compatibility. Third, and perhaps most importantly, the errors determined in step

3a are reported at build-time. Any incorrect usage can be easily corrected by the

programmer at this point before the error reaches the user. Fourth, all of the

overhead associated with performing these operations occurs at build-time. With

the dynamic metaprogramming approach, the overhead of determining duck

compatibility and code generation was left until run-time. The only overhead still

present at run-time is that of the wrapper class. While the wrapper class

www.manaraa.com

36

certainly will add overhead, it is probably by far the lowest run-time overhead of

any of the methods discussed for achieving loose coupling to third-party libraries

that do not define interfaces. In fact this approach generates code that is

basically indistinguishable from the manually written wrapper classes, with

equally little run-time overhead.

3.2.1. Novelty

 The novelty of this approach lies in its migration of wrapper class

generation from run-time to build-time. This allows us to keep the maintenance

advantages found with automatically generated wrapper classes without

introducing any new reliability or performance issues. Duck compatibility errors

that would occur at run-time with the dynamic metaprogramming approach are

shown to the programmer sooner, increasing the reliability of software.

Additionally the performance impact related to run-time code generation is

mitigated by performing the code generation at build-time.

3.3. .NET Implementation

We now examine a .NET example implementation created using the

bytecode rewriting implementation of the static-context duck typing design

presented within section 3.2.

3.3.1. Tools

The following tools and libraries were utilized in the creation of this .NET

implementation.

www.manaraa.com

37

MSIL Assembler

MSIL1 Assembler is a tool written by Microsoft designed to take a text file

containing MSIL instructions and produce a compiled executable or library (9).

Figure 3.3 shows a simple hello world program written in CIL. The MSIL

Assembler takes a text file like Figure 3.3, containing CIL instructions, and

outputs a compiled binary executable or library containing bytecode instructions.

MSIL Disassembler

MSIL Disassembler is a tool written by Microsoft designed to take a

compiled .NET program as an input and produce a text file containing MSIL

instructions (10). This output can be provided as an input to MSIL Assembler.

Given a compiled hello world program written in any .NET language MSIL

Disassembler would produce an output similar to Figure 3.3.

1
 The bytecode format used within the .NET Framework was originally known as Microsoft

Intermediate Language (MSIL). During the standardization of .NET Framework components,
MSIL was renamed Common Intermediate Language (CIL), but several tools still refer to CIL by
its original name.

.class private auto ansi beforefieldinit Program

 extends [mscorlib]System.Object

{

 .method private hidebysig static void Main() cil managed

 {

 .entrypoint

 .maxstack 8

 IL_0000: ldstr "Hello World!"

 IL_0005: call void

 [mscorlib]System.Console::WriteLine(string)

 IL_000a: ret

 }

}

Figure 3.3: Hello World in CIL (abridged)

www.manaraa.com

38

DeftTech.DuckTyping

DeftTech.DuckTyping is a library written by David Meyer (7). This library

implements dynamic-context duck typing for the .NET framework as described in

section 2.2.1.

System.Text.RegularExpressions

System.Text.RegularExpressions is a regular expression processing

library built into the .NET Framework. It can search input text for specific

patterns using a special regular expression syntax.

Red Gate’s .NET Reflector

.NET Reflector is a tool that takes compiled .NET software and reverse

compiles it to several source languages (11). The tool applies heuristics based

on knowledge of how compilers perform CIL code generation. This tool can take

a compiled .NET program and show an approximation of the original source.

3.3.2. Components

The following components were built for the .NET implementation.

DuckTyping.Contracts

DuckTyping.Contracts is a dynamic-link library (DLL) written in C# that

contains the contracts allowing a programmer to request a duck type. This DLL

contains the .NET implementation of the static_duck_cast operator shown in

Figure 3.2. The source listing of this component is shown in Figure 3.4.

www.manaraa.com

39

The AsDuck method uses the C# extension method syntax. In C# an

extension method is a static method that may be called using instance method

syntax (12). In .NET all types derive from System.Object, which is aliased by the

C# keyword object. Since the AsDuck method extends System.Object, it may be

called as an instance method from any object so long as the

DuckTyping.Contracts library is referenced.

Programs that use this .NET implementation must reference the

DuckTyping.Contracts library during compilation, but the library is not needed at

run-time. This library provides the hooks that are used by the bytecode rewriting

tool.

ilrewrite

ilrewrite is the bytecode rewriting tool for the .NET implementation. This

tool takes a compiled .NET program as its input. The program takes this input

using System;

namespace DuckTyping.Contracts

{

 public static class DuckType

 {

 public static TDestination

 AsDuck<TSource, TDestination>(this TSource source)

 where TDestination : class

 {

 throw new NotImplementedException();

 }

 }

}

Figure 3.4: DuckTyping.Contracts

www.manaraa.com

40

program and calls the MSIL disassembler to get a textual representation of the

input program's CIL code. Next the tool uses a regular expression to search the

CIL for sites where the AsDuck extension method from the DuckTyping.Contracts

DLL is called. At each call site the source and destination types are examined

for duck compatibility using the DeftTech.DuckTyping library. If the destination

type is not duck compatible with the source type an error is recorded, otherwise

the DeftTech.DuckTyping library is used to dynamically create a DLL containing

a wrapper class. The wrapper contains an instance of the source type and

implements the destination interface though delegation to the source type

instance. Each call site to the AsDuck method within the input program is then

replaced with an instantiation of the appropriate wrapper class. The source

parameter to AsDuck is passed as the input argument to the wrapper class. Next

the MSIL disassembler is again called for each of the wrapper class DLLs

generated by the DeftTech.DuckTyping library. The CIL code for each wrapper

class is merged into the output CIL. Finally the output CIL code is passed to the

MSIL assembler to create the compiled output software.

3.3.3. Example

The program from Figure 3.6 references a third party library. The source

code for this library is shown in Figure 3.5, but the programmer that wrote the

code in Figure 3.6 does not have access to this source. The programmer was

given only the compiled binary file that contains Saz, so he cannot simply mark

Saz as an implementor of IFoo.

www.manaraa.com

41

To maintain loose coupling the programmer defined the IFoo interface and

wrote Baz so it is coupled only to the IFoo interface. Since the Saz class is not

marked as an implementor of IFoo, the saz reference cannot be directly passed

to Baz. It is possible to call the AsDuck extension method shown in Figure 3.4.

If the programmer were to build and run the program shown in Figure 3.6

it would crash at run-time upon encountering the call to the AsDuck extension

using System;

public class Saz

{

 public void Bar()

 {

 Console.WriteLine("Saz.Bar()");

 }

};

Figure 3.5: Source Code of Third-Party Library Containing Saz (C# language)

using System;

using DuckTyping.Contracts;

public interface IFoo {

 void Bar();

};

static class Program {

 static void Baz(IFoo foo) {

 foo.Bar();

 }

 static void Main() {

 var saz = new Saz();

 Baz(saz.AsDuck<Saz, IFoo>());

 }

};

Figure 3.6: Example Input Program (C# language)

www.manaraa.com

42

method. Recall from the definition of AsDuck shown in Figure 3.4 that it simply

throws a NotImplementedException. Instead however the programmer takes the

output program created from compiling Figure 3.6 and passes it as an input to

ilrewrite. Ideally this is an automatic post build step in the build script.

In Figure 3.7 the CIL code from the Main method in Figure 3.6 is shown as

ilrewrite would see the compiled input program. The call to AsDuck as well as

the type parameters are clearly visible in the assembly listing. In this case the

source type is Saz (defined within the library named ThirdParty) and the

destination is IFoo. ilrewrite uses a regular expression to locate this call site and

extract the type parameters.

.method private hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 1

.locals init ([0] class [ThirdParty]Saz saz)

IL_0000: nop

IL_0001: newobj instance void [ThirdParty]Saz::.ctor()

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: call !!1 [DuckTyping.Contracts]

 DuckTyping.Contracts.DuckType::

 AsDuck<class [ThirdParty]Saz,class IFoo>(!!0)

IL_000d: call void Program::Baz(class IFoo)

IL_0012: nop

IL_0013: ret

}

Figure 3.7: CIL Listing of Main method within Figure 3.6 before Transformation

www.manaraa.com

43

After locating the call sites, ilrewrite calls into the DeftTech.DuckTyping

library to determine type compatibility. This library was originally written to

perform dynamic-context duck typing at run-time, but was modified slightly to

perform static-context duck typing at compile-time. When ilrewrite runs, any

duck-compatibility problems are reported. Since Saz implements all the methods

defined on the IFoo interface, there are no duck incompatibilities so the bytecode

rewriting process continues.

For each unique source/destination type pair within the input program

ilrewrite generates a wrapper class. The wrapper class created from the call to

AsDuck within Main in Figure 3.6 is shown in Figure 3.8. The wrapper class is

shown as C# code after reverse compiling the generated class from the compiled

CIL using Red Gate's .NET Reflector.

The actual call site where the AsDuck extension method is called is

replaced by an instantiation of the wrapper class. Since CIL is a stack-based

assembly language, and since both the wrapper class constructor and the

internal class DuckProxy_Saz : IFoo {

 private readonly Saz duck;

 internal DuckProxy_Saz(Saz A_1) {

 this.duck = A_1;

 }

 public sealed override void Bar() {

 this.duck.Bar();

 }

}

Figure 3.8: Generated DuckProxy_Saz Wrapper Class (C# Language) (abridged)

www.manaraa.com

44

AsDuck method both take a single argument of type TSource and return an

object of type TDestination, it is possible to simply replace the call to the AsDuck

method with a newobj instruction using the wrapper class constructor. This

works because both statements have the same stack semantics. Figure 3.9

shows the CIL after being transformed by ilrewrite. Figure 3.10 shows Figure 3.9

as C# code, again using Red Gate's .NET Reflector to reverse compile the output

program.

After determining duck type compatibility, merging in generated wrapper

classes, and modifying AsDuck call sites, the modified CIL listing is passed to the

.method private hidebysig static void Main() cil managed

{

.entrypoint

.maxstack 1

.locals init ([0] class [ThirdParty]Saz saz)

IL_0000: nop

IL_0001: newobj instance void [ThirdParty]Saz::.ctor()

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: newobj instance void DuckProxy__ThirdParty_Saz::

 .ctor(class [ThirdParty]Saz)

IL_000d: call void Program::Baz(class IFoo)

IL_0012: nop

IL_0013: ret

}

Figure 3.9: CIL Listing of Main method within Figure 3.6 after Transformation

static void Main()

{

 Saz saz = new Saz();

 Baz(new DuckProxy_Saz(saz));

}

Figure 3.10: Listing of Main Method within Figure 3.6 after Transformation (C# Language)

www.manaraa.com

45

MSIL Assembler and reassembled into a binary executable or library. The code

can now be ran without error. All of the run-time overhead of determining duck

type compatibility and generating wrapper classes has been performed at build-

time. Any duck compatibility errors are detected at build-time and will not occur

at run-time. Since all references to the DuckTyping.Contracts DLL have been

stripped from the output code it is no longer needed at run-time.

Figure 3.11: Bytecode Rewriting Data Flow

www.manaraa.com

46

Chapter 4. Analysis

4.1. Reliability

The earlier an error or defect can be detected the more reliable a system

will be (13) (14). When an error is detected at compile-time it eliminates any

possibility of it occurring at run-time. An error detected at compile-time is much

easier and less costly to correct than an error discovered at run-time.

In this subsection, the types of errors that may occur for each of the

approaches described in the proceeding chapters are explained. For each

approach, the timing (run-time versus compile-time) and possibility of the error is

examined to assess the reliability of each approach.

4.1.1. Variable Usage Error

Each variable within a program supports a set of operations. If the

programmer specifies an operation that is not supported by the variable an error

will result. The reliability of the system is better if these errors can be detected

during compile-time.

Techniques that do not detect variable usage errors at compile-time are

subject to serious reliability issues. Even an extremely simple error such as a

typographical error could easily result in a run-time error. In a large system it is

quite possible that some of these errors will be missed during testing and affect

the user.

www.manaraa.com

47

Wrapper Class

Figure 4.1 shows a program using a wrapper class with an incorrect usage

of the variable foo. Within the Baz method the Gar method is called from foo, but

foo does not support the Gar method. Compiling this program gives the following

compile-time error:

'IFoo' does not contain a definition for 'Gar'

Dynamic-Context Duck Typing

Figure 4.2 shows a program using dynamic-context duck typing with an

incorrect usage of the variable foo. Within the Baz method the Gar method is

called from foo, but foo does not support the Gar method. This program

compiles successfully despite the incorrect variable usage.

static class Program {

 static void Baz(IFoo foo) { foo.Gar(); }

 static void Main() {

 Baz(new SazWrapper(new Saz()));

 }

}

Figure 4.1: Incorrect Variable Usage with Wrapper Class (C# Language)

static class Program {

 static void Baz(dynamic foo) { foo.Gar(); }

 static void Main()

 {

 Baz(new Saz());

 }

}

Figure 4.2: Incorrect Variable Usage with Dynamic-Context Duck Typing (C# Language)

www.manaraa.com

48

When the program in Figure 4.2 executes, the following run-time error

crashes the program:

'Saz' does not contain a definition for 'Gar'

Although this is basically the same error as in section 4.1.1, the fact that it

is delayed until run-time hurts the reliability of software written using dynamic-

context duck typing.

Static-Context Duck Typing

Figure 4.3 shows a program using static-context duck typing with an

incorrect usage of the variable foo. Within the Baz method the Gar method is

called from foo. Baz is passed Saz as its type parameter, but since Saz does not

have a Gar method the compiler produces the following compile-time error:

'Gar' : is not a member of 'Saz'

www.manaraa.com

49

Metaprogramming

Figure 4.4 shows a program using metaprogramming with an incorrect

usage of the variable foo. Within the Baz method the Gar method is called from

foo, but foo does not support the Gar method. Compiling this program gives the

following compile-time error:

'IFoo' does not contain a definition for 'Gar'

#include <iostream>

using namespace std;

class Saz {

public:

 void Bar() { cout << "Saz::Bar" << endl; }

};

template <typename T>

void Baz(T &foo) { foo.Gar(); }

int main() {

 Saz s;

 Baz(s);

 return 0;

}

Figure 4.3: Incorrect Variable Usage with Static-Context Duck Typing (C++ Language)

static class Program {

 static void Baz(IFoo foo) { foo.Gar(); }

 static void Main() {

 Baz(DuckTyping.Cast<IFoo>(new Saz()));

 }

}

Figure 4.4: Incorrect Variable Usage with Metaprogramming (C# Language)

www.manaraa.com

50

Language Modification

Figure 4.5 shows a program using the language modification described in

section 3.1 with an incorrect usage of the variable foo. Within the Baz method

the Gar method is called from foo, but foo does not support the Gar method.

Although a compiler implementing this approach has not been created, it would

produce something like the following compile-time error:

'IFoo' does not contain a definition for 'Gar'

Bytecode Rewriting

Figure 4.6 shows a program using bytecode rewriting with an incorrect

usage of the variable foo. Within the Baz method the Gar method is called from

foo, but IFoo does not have a Foo method causing the compiler to produce the

following compile-time error:

'IFoo' does not contain a definition for 'Gar'

static class Program {

 static void Baz(IFoo foo) { foo.Gar(); }

 static void Main() {

 Baz(new Saz() asduck IFoo);

 }

}

Figure 4.5: Incorrect Variable Usage with Language Modification

www.manaraa.com

51

4.1.2. Duck Compatibility Error

A class is duck compatible with an interface if it implements all members

defined on the interface. If a variable treated as a duck does not support the

interface required by the duck variable, an error will occur. For dynamic-context

duck typing the interface is not explicitly defined, but the set of methods called

from the variable could be considered the interface.

Duck compatibility errors may be detected at compile-time or run-time.

Discovering duck incompatibilities at compile-time improves reliability because it

eliminates a possible run-time error. A programmer who accidentally supplied an

incompatible type would see the error during compilation when it can be fixed

easily.

Wrapper Class

Figure 4.7 shows a program with a duck compatibility error. The

programmer attempted to pass an instance of Paz to the foo parameter of Baz by

creating the wrapper class PazWrapper that implements the IFoo interface

required for foo.

static class Program {

 static void Baz(IFoo foo) { foo.Gar(); }

 static void Main() {

 var saz = new Saz();

 Baz(saz.AsDuck<Saz, IFoo>());

 }

};

Figure 4.6: Incorrect Variable Usage with Bytecode Rewriting (C# Language)

www.manaraa.com

52

With correctly written wrapper classes, duck incompatibilities manifest

themselves as wrapper classes that will not compile. In the case of Figure 4.7,

attempting to compile results in the following compile-time error:

'Paz' does not contain a definition for 'Bar'

occurring within the Bar method within the PazWrapper class. This should make

sense as Paz is not duck compatible with IFoo.

Dynamic-Context Duck Typing

Figure 4.8 shows a program with a duck compatibility error. An instance

of Paz is passed to the Baz method for the foo parameter. Although the foo

parameter's type is dynamic and therefore has no explicit interface requirements,

by looking at the body of the method we can see that Baz requires the object

passed to foo to support a parameterless Bar method. Since the program in

Figure 4.8 uses dynamic-context duck typing, it compiles without error.

public class Paz { }

class PazWrapper : IFoo {

 private readonly Paz paz;

 public PazWrapper(Paz paz) { this.paz = paz; }

 public void Bar() { this.paz.Bar(); }

}

static class Program {

 static void Baz(IFoo foo) { foo.Bar(); }

 static void Main() {

 Baz(new PazWrapper(new Paz()));

 }

}

Figure 4.7: Duck Incompatibility with Wrapper Class (C# Language)

www.manaraa.com

53

Since Paz is not duck compatible with the implicit ‘interface’ required by

Baz, a duck compatibility error will occur and crash the program. The following

error occurs at run-time:

'Paz' does not contain a definition for 'Bar'

 Static-Context Duck Typing

Figure 4.9 shows a program using static-context duck typing containing a

duck compatibility error. A reference to an instance of Paz is passed to the foo

parameter of the Baz method. Although the Baz method is templated to accept a

foo parameter of any type, since the Bar method is called off from foo, only types

that support a Bar method are allowed. Compiling the program in Figure 4.9

results in the following error message:

'Bar' : is not a member of 'Paz'

confirming that with static-context duck typing duck compatibility errors are

reported at compile-time.

class Paz { }

static class Program {

 static void Baz(dynamic foo) { foo.Bar(); }

 static void Main() {

 Baz(new Paz());

 }

}

Figure 4.8: Duck Incompatibility with Dynamic-Context Duck Typing (C# Language)

www.manaraa.com

54

Metaprogramming

Figure 4.10 shows a program with a duck compatibility error. An instance

of Paz is cast to the IFoo interface from Figure 1.1 using the metaprogramming

library described in section 3.3.1, but Paz does not implement the members of

IFoo. This creates a run-time error that crashes the program with the following

error:

Duck type does not implement a method named "Bar"

with compatible parameters and return type.

#include <iostream>

using namespace std;

class Paz {};

template <typename T>

void Baz(T &foo) { foo.Bar(); }

int main() {

 Paz p;

 Baz(p);

 return 0;

}

Figure 4.9: Duck Incompatibility with Static-Context Duck Typing (C++ Language)

www.manaraa.com

55

Language Modification

Figure 4.11 shows a program with a duck compatibility error. An instance

of Paz is cast using the asduck operator to the IFoo interface with the language

modification approach described in section 3.1. Since Paz does not implement

all the members defined on IFoo it is not duck compatible. Although an actual

implementation of the language modification approach was not created, the

following shows the kind of compile-time error that would be reported if such a

compiler existed:

‘Paz’ is not duck compatible with ‘IFoo’

public class Paz { }

static class Program {

 static void Baz(IFoo foo) { foo.Bar(); }

 static void Main() {

 Baz(DuckTyping.Cast<IFoo>(new Paz()));

 }

}

Figure 4.10: Duck Incompatibility with Metaprogramming (C# Language)

public class Paz { }

static class Program {

 static void Baz(IFoo foo) { foo.Bar(); }

 static void Main() {

 Baz(new Paz() asduck IFoo);

 }

}

Figure 4.11: Duck Incompatibility with Language Modification

www.manaraa.com

56

Bytecode Rewriting

Figure 4.12 shows a program written using the bytecode rewriting

technique that contains a duck compatibility error. The program attempts to

create a duck for an instance of Paz that implements the IFoo interface, but since

Paz does not implement all the methods in IFoo (namely the Bar method), it is

not duck compatible with IFoo.

Although the program in Figure 4.12 will compile, the compiled program is

immediately sent to the ilrewrite program. This program determines that Paz is

not duck compatible with IFoo and reports the following error:

cannot create duck type for Paz implementing

interface IFoo

Since this error occurs during the program's overall build process,

bytecode rewriting detects duck compatibility errors at compile-time.

public class Paz {}

static class Program

{

 static void Baz(IFoo foo) { foo.Bar(); }

 static void Main() {

 var paz = new Paz();

 Baz(paz.AsDuck<Paz, IFoo>());

 }

};

Figure 4.12: Duck Incompatibility with Bytecode Rewriting (C# Language)

www.manaraa.com

57

4.1.3. Logical Type Mismatch

It is possible for logically unrelated classes to be duck compatible. In

Figure 2.8 one such example was presented involving CreditCard and

Rhinoceros classes both having a Charge method. Programming languages

typically require that classes explicitly mark themselves as interface

implementors to avoid such accidental type compatibility.

Duck typing provides a mechanism that allows programmers to avoid the

checks that normally would prevent accidental structural type compatibility. As

such there is a potential for reliability issues if a programmer accidentally uses a

type that, although being duck compatible, is logically unrelated. So long as the

programmer is required to explicitly specify when duck type compatibility is

desired the reliability concerns are largely mitigated. When duck casts are

explicit the programmer is more likely to identify accidental compatibility, such as

with the CreditCard and the Rhinoceros, and the compiler does not need to make

any assumptions about the intent of the programmer.

Wrapper Class

Figure 4.1 shows how the assignment of an instance of Saz to IFoo during

the call to Baz requires an explicit instantiation of the SazWrapper wrapper class.

Dynamic-Context Duck Typing

Figure 4.2 shows how the assignment of an instance of Saz to the foo

parameter of type dynamic is implicit when using dynamic-context duck typing.

www.manaraa.com

58

Static-Context Duck Typing

Figure 4.3 shows how the assignment of an instance of Saz to the foo

parameter of type T is implicit when using static-context duck typing.

Metaprogramming

Figure 4.4 shows how the assignment of an instance of Saz to the foo

parameter is explicit when using metaprogramming.

Language Modification

Figure 4.5 shows how the assignment of an instance of Saz to the foo

parameter of type IFoo requires an explicit asduck cast when using language

modification.

Bytecode Rewriting

Figure 4.6 shows how the assignment of an instance of Saz to the foo

parameter of type IFoo requires an explicit call to the AsDuck extension method

providing both the source and destination types.

4.1.4. Wrapper Class Implementation Error

Manually written wrapper classes have the potential to be written

incorrectly, causing reliability problems. When wrapper classes are generated

automatically by a library or language, implementation errors are much less

likely. If they do occur, fixing them once in the library or language averts the bug

for all generated wrapper classes. Figure 2.2 shows an example of a wrapper

class containing an implementation error.

www.manaraa.com

59

Wrapper class implementation errors are a reliability problem unique to

wrapper classes. All other techniques either generate wrapper classes

automatically or do not use wrapper classes.

4.1.5. Reliability Summary

 The language modification and bytecode rewriting techniques have the

best reliability since they do not suffer from any of the reliability problems

described in this section.

4.2. Tooling

4.2.1. Tooling Based on Static Type Information

Many software development tools utilize static type information to assist

the programmer with various activities. These tools work most reliably and

predictably when based on static type information.

A code completion editor is a tool that uses static type information. It

provides the programmer with a list of supported operations for a given variable.

These tools analyze the static type information to determine what options should

be shown. If no static type information is available for the variable in question,

these tools cannot provide any suggestions as any operation could potentially be

valid.

Another useful tool that uses static type information is an automatic

refactoring system. These systems are able to automatically rename all

occurrences of a type or operation. Instead of an error-prone textual find and

www.manaraa.com

60

replace, these tools work symbolically based on static type information. The

tools can only locate symbols deterministically when the bindings are static.

When bindings are dynamic they may be undecidable or ambiguous.

Tools based on static type information are effective for all techniques

except dynamic-context duck typing described in section 2.2.1 and static-context

duck typing described in section 2.2.2. Tools based on static type information

are ineffective for dynamic-context duck typing because no static type

information exists when variables are dynamically typed.

A few examples show how tools based on static type information are

ineffective for the static-context duck typing described in section 2.2.2. In Figure

4.13, the set of operations allowed on the foo parameter within the Baz method is

completely undefined. Since the Baz template is never expanded within the

program, literally any operation could potentially be valid on foo.

In Figure 4.14, the Bar method in Baz is statically bound to two Bar

symbols (the one defined in Saz1 and the other defined in Saz2). If attempting to

#include <iostream>

using namespace std;

template <typename T>

void Baz(T &foo) {

 // what operations are legal on foo?

}

int main() {

 return 0;

}

Figure 4.13: Ineffective Static Type Information (C++ Language)

www.manaraa.com

61

rename Bar from Baz, Saz1, or Saz2 it is unclear what effect this should have on

the other Bar symbols. If they are all renamed the rename may be

unintentionally broad. If only a single symbol is renamed the program becomes

invalid.

4.2.2. Segments/Breaks Existing Tooling

The primary disadvantage unique to the language modification approach

from section 3.1 is that it breaks existing tooling and segments the language's

user community. This disadvantage is explained fully in section 3.1.

www.manaraa.com

62

4.2.3. Increased Build Time

Large programs can frequently take a long time to build. All things being

equal, a shorter compilation time is obviously preferable. The dynamic-context

duck typing and metaprogramming approaches perform the bulk of their

operations at run-time instead of compile-time. These approaches are therefore

preferable for decreasing build times.

All the other approaches increase build times. Wrapper classes increase

the amount of code to compile, static-context duck typing increases the amount

#include <iostream>

using namespace std;

class Saz1 {

public:

 void Bar() { cout << "Saz1::Bar" << endl; }

};

class Saz2 {

public:

 void Bar() { cout << "Saz2::Bar" << endl; }

};

template <typename T>

void Baz(T &foo) { foo.Bar(); }

int main() {

 Saz1 s1;

 Baz(s1);

 Saz2 s2;

 Baz(s2);

 return 0;

}

Figure 4.14: Ambiguous Rename (C++ Language)

www.manaraa.com

63

of code to compile because of template expansions, language modifications

increase build times because the amount of work performed by the compiler

increases, and bytecode rewriting increases build times because the ilrewrite tool

must run as a post-build operation. Of these approaches bytecode rewriting is

likely to take the most time because it requires a separate process to run after

the build. Instead of running inside the compiler itself bytecode rewriting must re-

read the compiled software modify it and re-write the modified software.

Comparing measurements of build times for each of the various

approaches would not be appropriate. The primary implementation concern for

the bytecode rewriting implementation described in section 3.3 was programmer

efficiency in creating the tool—not its compilation speed. If the tool was tweaked

for performance such an evaluation would be meaningful.

4.2.4. Tooling Summary

 The dynamic metaprogramming approach has the best tooling support.

This was the only approach that worked well for all three of the tooling evaluation

criteria.

4.3. Maintainability

More code within any software, especially code that provides no intrinsic

functionality, is detrimental to maintainability. This follows simple logic—the

more code within a system, the more code subject to change during

maintenance, and the more expensive the maintenance becomes.

www.manaraa.com

64

Additional code can also affect readability, an important consideration for

maintainability. When many statements are required to express a single succinct

idea a maintainer has much more code to read, increasing the cost of

maintenance. When the same template or pattern is repeated because of

limitations or restrictions within a language the cost of maintenance is increased.

 Per Type Per Duck Cast
wrapper class one line per

interface member
One statement to instantiate wrapper

dynamic duck none none
static duck none none
metaprogramming none one statement to request duck type
language
modification

none one asduck cast operator

bytecode rewriting none one statement to call AsDuck method

 Table 4.1: Maintenance Cost from Lines of Code

Maintenance costs are very important in software development. It has

been estimated that the cost of maintenance can be four times the cost of

development (15).

 Table 4.1 shows the additional code required for each approach. One

additional statement per duck cast is of little concern to maintainability. Although

this does slightly increase the number of lines, it also makes the code more

readable by explicitly specifying the desired type compatibility.

The maintenance cost of adding a new wrapper class type for every

interface and then a line of code for each member defined on that interface is a

much greater concern. These classes add a whole new type and many lines of

code that provide no intrinsic functionality; furthermore each wrapper class

www.manaraa.com

65

expresses the same delegation pattern. The additional maintenance cost makes

wrapper classes less maintainable than other approaches.

4.4. Performance

Performance can be analyzed both theoretically, by examining the number

and types of operations required, and empirically, by measuring the real world

performance. Theoretical analysis provides a logical framework that should

explain real world result and is less dependent on a multitude of implementation

factors. Empirical performance measurements provide evidence that

demonstrates the correctness of the logical model, at least under the conditions

under which the measurements were performed.

Performance can be measured in terms of both speed and space. Speed

is related directly to the number and type of operations that occur at run-time.

Assuming that each operation takes the same amount of time, the process

requiring the fewest operations will perform fastest.

4.4.1. Virtual Method Calls

Table 4.2 shows the approaches that require an extra virtual method call.

Approaches that require virtual method calls will incur this run-time overhead

when calling methods through a duck.

Although virtual method calls require virtual table lookups at run-time, the

cost is usually minimal. In C++ for example, virtual method calls require five

www.manaraa.com

66

more memory references than non-virtual method calls (16). The run-time

overhead from an extra virtual method call is likely to be very minimal.

Approach Required
wrapper class X
dynamic duck
static duck
metaprogramming X
language modification X
bytecode rewriting X

Table 4.2: Virtual Method Call Requirements

4.4.2. Call Site Interpretation

With dynamic-context duck typing each method call will require run-time

interpretation. A variable using dynamic type binding using pure interpretation

typically takes at least ten times longer than the equivalent machine code (17).

In some implementations, such as the implementation found within .NET, rather

than pure interpretation, the dynamic type binding is compiled to machine code at

run-time and cached, so most of the overhead is paid when the code executes

for the first time with new types rather than for each execution (18).

This performance issue is unique to dynamic-context duck typing. None

of the other approaches require run-time call site interpretation.

4.4.3. Run-Time Code Generation

The metaprogramming technique described in section 2.3 requires run-

time code generation. At run-time the library builds a dynamic module by

emitting the bytecode instructions and types required to delegate calls off the

target interface to an instance of the source type. This module is built in-

www.manaraa.com

67

memory. Creating this module requires inspecting the methods available on the

source type for compatible calls on the target interface, and then emitting the

appropriate instructions for delegation. After the module is built, it is loaded into

the current process and an instance of the generated wrapper class is created.

Although this run-time code generation is a fairly expensive process, the

resulting wrapper classes and dynamic modules can easily be cached, so the

process is only required once per source/target pair. When duck types are

requested and there is a cache hit, the performance overhead is approximately

that of a hash table search. This is typically quite fast, although probably slower

than a virtual method call.

Run-time code generation is mostly unique to metaprogramming. The

other approaches do not require run-time code generation, although the

dynamic-context duck typing approach may use run-time code generation as an

optimization technique to avoid the cost of call site interpretation for each

execution.

4.4.4. Run-Time Type Checking

All of the approaches other than dynamic-context duck typing and

metaprogramming use static type checking. Static type checking reduces the

run-time overhead of performing type checking. Although dynamic-context duck

typing and metaprogramming both have overhead related to run-time type

checking they are slightly different.

www.manaraa.com

68

With dynamic-context duck typing the run-time type checking is actually an

aspect of the call site interpretation from section 4.4.2. One of the important

tasks that must be performed during run-time call site interpretation is type

checking. Any usage errors are reported during this run-time interpretation.

With metaprogramming, run-time type checking assures that the source

and destination types in the duck cast are duck compatible. This was explained

in section 4.1.2 with respect to its detrimental affects on reliability, but so to does

it negatively affect performance. The source and destination types specified by

the duck cast must be examined for duck compatibility at run-time. As described

in section 4.4.3 the results of this operation can be cached to reduce the

performance impact for additional duck casts involving the same types.

4.4.5. Empirical Results

All empirical measurements were obtained on a machine with the

specifications shown in Table 4.3. The programs were written in C# version 4.0

using the Microsoft C# compiler version 4.0.30319.1 on a release build. The

programs were compiled to machine code before execution to avoid the effects

of the .NET just-in-time bytecode compiler. Timings were performed by a high-

performance timer with resolution to around 279 nanoseconds.

Processor Intel Core Duo T2500 at 2.00GHz
Operating System Windows XP Professional SP 3
Memory 2.00 GB

Table 4.3: Test Machine Details

www.manaraa.com

69

Call Performance

To measure the performance of method calls for each of the approaches a

simple test program was written. The program compared a call to a virtual

method (through an interface), a call to a non-virtual method, a virtual method

call through a dynamic variable (call site interpretation), a non-virtual method call

through a dynamic variable (call site interpretation), and a call to a method

through a wrapper class. Measurements were made by placing each type of call

within a loop executing 100 million times. The timing was done outside this loop,

using the high performance timer. The timing of an empty loop was also

measured so the execution time incurred from the loop itself could be removed.

Measurements were taken fifty times and the min, max, and mean averages are

shown in Table 4.4.

www.manaraa.com

70

virtual method

• mean 4.18 ns

• min 4.15 ns

• max 4.24 ns

non-virtual method

• mean 3.17 ns

• min 3.15 ns

• max 3.22 ns

dynamic variable to virtual method

• mean 53.16 ns

• min 52.95 ns

• max 54.92 ns

dynamic variable to non-virtual method

• mean 53.07 ns

• min 52.90 ns

• max 53.48 ns

call through wrapper

• mean 6.21 ns

• min 6.18 ns

• max 6.30 ns

Table 4.4: Call Performance

Metaprogramming

To measure the performance from the metaprogramming approach, a test

program was written. This test program contained one-thousand interface

definitions similar to the IFoo interface seen in Figure 1.1. A class like Saz from

Figure 1.4 was written. For each of the one-thousand interfaces, a cast from an

instance of Saz to the interface was performed. The timing for all of the 1000

calls was measured using the high-performance timer. Since the

metaprogramming library (7) used caching to avoid recomputing duck

compatibility and regenerating wrapper class libraries for previously encountered

types, the timing was measured twice. The first time each of the one-thousand

types was new and not in the cache. During the second iteration the type was

www.manaraa.com

71

found in the cache. These measurements were taken fifty times and the mean

averages are shown in Table 4.5.

cache hit 0.037 ms
cache miss 1.08 ms

Table 4.5: Metaprogramming Duck Cast Performance

4.4.6. Performance Summary

 The C++ static duck typing has the best theoretical performance.

Language modification, bytecode rewriting, and wrapper classes all have

excellent performance.

4.5. Summary

Table 4.6 provides a summary of the analysis contained within this

chapter. Each column shows an evaluation criterion within its evaluation

category (i.e. Reliability, Tooling, Maintainability, Performance). Each row

represents one of the considered approaches. For each evaluation criterion a

plus (+) symbol is assigned to a generally positive or beneficial characteristic and

a negative symbol (−) is assigned to a generally negative or detrimental

characteristic.

www.manaraa.com

72

 2a 2b 2c 2d
 i ii iii iv i ii iii i i ii iii iv
1a + + + − + + − − − + + +
1b − − − + − + + + + − + −
1c + + − + − + − + + + + +
1d + − + + + + + + − + − −
1e + + + + + − − + − + + +
1f + + + + + + − + − + + +

Table 4.6: Analysis Summary

1. Approaches
a. Wrapper Class (section 2.1)
b. Dynamic-Context Duck Typing

(section 2.2.1)
c. Static-Context Duck Typing (section

2.2.2)
d. Metaprogramming (section 2.3)
e. Language Modification (section 3.1)
f. Bytecode Rewriting (section 3.2)

2. Evaluation
a. Reliability

i. Variable Usage Error

+ Detected at Compile-Time

− Detected at Run-Time
ii. Duck Compatibility Error

+ Detected at Compile-Time

− Detected at Run-Time
iii. Logical Type Mismatch

+ Requires Explicit Cast or Wrapper
Class

− Happens Implicitly
iv. Wrapper Class Implementation

Error

+ Unlikely (handled by tool) or Not
Applicable

− Possible (handled by programmer)
b. Tooling

i. Tooling Based on Static Type
Information

+ Effective

− Ineffective
ii. Segments/Breaks Existing Tooling

+ No

− Yes
iii. Increases Build Time

+ No

− Yes
c. Maintainability

i. Wrapper Class Maintenance

+ Not Required

− Required
d. Performance

i. Virtual Method Call

+ Not Required

− Required
ii. Call Site Interpretation

+ Not Required

− Required
iii. Run-Time Code Generation

+ Not Required

− Required
iv. Run-Time Type Checking

+ Not Required

− Required

As can be seen in Table 4.6, bytecode rewriting has the most advantages

and fewest disadvantages.

www.manaraa.com

73

Chapter 5. Findings

5.1. Conclusions

5.1.1. Reliability

The analysis shows that the approaches described in the design are better

for reliability. The two approaches described in the design were the only

approaches able to detect all of the reliability errors described in section 4.1 at

compile-time.

For most applications reliability is a very important concern. Good

reliability is always a concern for software, whereas performance is primarily a

concern only when the software is unacceptably slow.

5.1.2. Maintainability

The only approach that had serious maintainability issues was wrapper

classes. All other approaches including those described in the design did not

suffer from the maintainability problems caused by wrapper classes.

5.1.3. Tooling

The metaprogramming approach described in section 2.3 is the best

approach in terms of the tooling criteria considered. Wrapper classes and

bytecode rewriting both have excellent tooling support with their only downside

being increased build times. The increase in build time from wrapper classes is

likely to be less than the increase from the metaprogramming approach.

www.manaraa.com

74

Although the metaprogramming approach is better than wrapper classes

and bytecode rewriting in terms of tooling alone, it is extremely unlikely that build

speeds are more important than reliability.

Bytecode rewriting is also compatible with a hybrid approach combining the

fast build times enjoyed by metaprogramming and the excellent reliability found

with bytecode rewriting. With this hybrid approach metaprogramming would

serve as a fallback if the bytecode rewriting post-build step had not been

performed. Programmers might choose not to perform the bytecode rewriting for

every debug build. The bytecode rewriting could still be performed for release

builds and on demand.

5.1.4. Performance

Theoretically the C++ static duck typing described in section 2.2.2 should

have the best performance since it does not require virtual method calls, call site

interpretation, run-time code generation, or run-time type checking. Since this

form of static-context duck typing is not supported within the C# language where

the rest of empirical results were measured, the performance of the approach

was not measured directly, but it would have call performance equivalent to non-

virtual method calls from Table 5.1.

Language modification, bytecode rewriting, and wrapper classes all enjoy

excellent performance. All of these methods either explicitly or implicitly use

wrapper classes. Wrapper classes have a slight performance hit since they

require one extra virtual method call. Table 5.1 shows the actual time

www.manaraa.com

75

measurements for virtual methods. As can be seen in the table, a virtual method

call took only 4.18 nanoseconds on the test machine. Calls to non-virtual

methods through a wrapper class took 3.04 nanoseconds longer, about twice as

long as calling the non-virtual method directly. For most applications the time

required for the virtual call itself will be an extremely tiny percentage of the

overall time required by the method.

virtual method 4.18 ns
non-virtual method 3.17 ns
dynamic variable to virtual method 53.16 ns
dynamic variable to non-virtual method 53.07 ns
call through wrapper 6.21 ns

Table 5.1: Call Performance

The metaprogramming approach has a significant performance impact

during a duck cast, especially when the wrapper class does not already exist

within the cache. Although the performance impact of creating a wrapper for a

new type is fairly significant, the fact that this only needs to be done once per

type provides a dramatic speedup. After the duck creation, each call through the

duck has the same performance as language modification, bytecode rewriting,

and wrapper classes. The performance measurements for duck casting is shown

in Table 5.2.

cache hit 0.037 ms
cache miss 1.08 ms

Table 5.2: Metaprogramming Duck Cast Performance

With dynamic-context duck typing using dynamic variables there is no big

up front performance hit required for generating a wrapper class, but there is

www.manaraa.com

76

much more overhead for each call through a dynamic variable. Table 5.1 shows

the overhead for calls through dynamic variables.

5.1.5. Overall

Our original goal was to develop an approach that provides loose coupling

to third-party libraries without reducing reliability, maintainability, tooling support,

or performance. The bytecode rewriting technique described in section 3.2 is the

best overall technique for achieving this goal. These findings support our original

thesis.

The only downsides to bytecode rewriting were build times and the

performance impact from an additional virtual method call.

Although short build times are always desirable, they are usually less of a

consideration than other issues. Also as described in the tooling section above,

a hybrid metaprogramming and bytecode rewriting approach can easily mitigate

build time issues.

As for performance the only impact caused by bytecode rewriting was an

additional virtual method call. Although virtual method calls are somewhat slower

than non-virtual method calls, they are still extremely fast. The performance

overhead of the bytecode rewriting technique will only be an issue in extreme

edge cases for which programming languages based on bytecodes are probably

inappropriate anyway.

Many of the most widely used programming languages, such as Java, C#,

and Visual Basic.NET, are based on bytecode systems. The bytecode rewriting

www.manaraa.com

77

technique enables a reliable, maintainable, productive, and performant means to

achieve loose coupling to third-party classes within these languages.

5.2. Future Work

While the bytecode rewriting technique is designed to be applicable to all

languages based off bytecodes, it was only implemented for .NET languages.

Another implementation, perhaps based on the Java Virtual Machine, would help

to show the generality of this approach.

The bytecode rewriting tool built for .NET languages could be written for

better performance. The implementation described in section 3.3 used existing

tools based on input and output files. The rewriter's performance could be

greatly improved by removing its reliance on these external tools and performing

its disassembly, transformation, and reassembly in place and in memory. In

addition, breaking the dependency on tools within the .NET Framework would

also allow the tool to work with other .NET implementations, such as Mono. The

contracts DLL could also be written to do metaprogramming if the bytecode

rewriter is not run. This would greatly reduce the impact of bytecode rewriting's

build time since the rewriting could be skipped for quick debug builds.

One of the implementation approaches described in the design section was

language modification. As described in section 3.1, this approach is more

suitable for the standards body in charge of the language then as an extension

so it was not implemented. It was suggested that compiler generated classes

could be the implementation used by the compiler, but perhaps an even better

www.manaraa.com

78

implementation that avoided the run-time cost of wrapper classes could be

designed using the language modification approach. Perhaps these approaches

could be considered for inclusion into popular programming languages.

www.manaraa.com

79

Bibliography

1. Liskov, Barbara. Keynote address - data abstraction and hierarchy. Orlando,

Florida, United States : ACM, 1987, pp. 17-34.

2. Wolter, Jonathan, Ruffer, Russ and Hevery, Misko. Guide: Writing Testable

Code. [Online] [Cited: June 14, 2010.]

http://misko.hevery.com/attachments/Guide-Writing Testable Code.pdf. pp. 3-15.

3. Davis, Robin S. Who's Sitting on Your Nest Egg? s.l. : BookPros, LLC, 2007.

p. 7.

4. Apple. Introduction to The Objective-C Programming Language. [Online]

[Cited: May 25, 2010.]

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/Objecti

veC/Articles/ocObjectsClasses.html. p. 1.

5. Microsoft. C# Language Specification. [Online] 1999-2010. [Cited: April 24,

2010.] p.90 (1.29.3).

http://www.microsoft.com/downloads/details.aspx?familyid=DFBF523C-F98C-

4804-AFBD-459E846B268E&displaylang=en.

6. Koenig, Andrew and Moo, Barbara E. Templates and Duck Typing. Dr.

Dobb's. [Online] June 1, 2005. [Cited: June 20, 2010.]

http://www.drdobbs.com/cpp/184401971. pp. 1-4.

7. Meyer, David. Duck Typing Project. [Online] [Cited: May 2, 2010.]

http://www.deftflux.net/blog/page/Duck-Typing-Project.aspx. pp. 1-2.

www.manaraa.com

80

8. Povey, Dean. Duck Typing in Java using Dynamic Proxies. [Online] November

13, 2008. [Cited: May 30, 2010.] http://thinking-in-

code.blogspot.com/2008/11/duck-typing-in-java-using-dynamic.html. pp. 2-8.

9. Microsoft. MSIL Assembler (Ilasm.exe). [Online] [Cited: May 1, 2010.]

http://msdn.microsoft.com/en-us/library/496e4ekx(VS.80).aspx. p. 2.

10. —. MSIL Disassembler (Ildasm.exe). [Online] [Cited: May 1, 2010.]

http://msdn.microsoft.com/en-us/library/f7dy01k1(VS.80).aspx. p. 2.

11. Red Gate Software. .NET Reflector, class browser, analyzer and decompiler

for .NET. [Online] [Cited: June 5, 2010.] http://www.red-

gate.com/products/reflector/. p. 1.

12. Microsoft. Extension Methods (C# Programming Guide). [Online] [Cited:

June 1, 2010.] http://msdn.microsoft.com/en-us/library/bb383977.aspx. p. 2.

13. Ben-Ari, M. Understanding Programming Languages. 1996, p. 30.

14. Sebesta, Robert W. Concepts of Programming Languages, Seventh Edition.

s.l. : Addison-Wesley, 2005, pp. 16-17.

15. Sommerville, Ian. Software Engineering. s.l. : Pearson Education Limited,

2004, p. 494.

16. Stroustrup, Bjarne. What Is Object-Oriented Programming? s.l. : IEEE

Software, 1988, pp. 10-20.

17. Sebesta, Robert W. Concepts of Programming Languages, Seventh Edition.

s.l. : Addison-Wesley, 2005, p. 215.

www.manaraa.com

81

18. Microsoft. Inside C# 4.0 (video). [Online] Channel 9, November 31, 2008.

[Cited: June 8, 2010.] http://channel9.msdn.com/shows/Going+Deep/Inside-C-

40-dynamic-type-optional-parameters-more-COM-friendly. p. 2.

