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Abstract 

 

An Approach for Adding Type-Safe Static-Context Duck Typing to an Object-

Oriented Programming Language 

Kevin Pond 

June 24, 2010 

 

A practical approach for adding type-safe static-context duck typing to an 

object-oriented programming language is proposed.  This approach is suitable for 

languages such as Java, C#, or Visual Basic.NET.  Duck-typing is shown to 

increase testability and flexibility by reducing type coupling.  This approach is 

implemented for .NET languages and the impact on reliability, tooling, 

maintainability, and performance is compared to existing alternatives. 
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Chapter 1. Introduction 

Many object-oriented programming languages support the concept of 

interfaces.  Interfaces allow the programmer to define a set of methods that 

correspond to some capability.  An interface defines a set of methods that must 

be supported by classes that implement the interface, but it does not define how 

these methods are implemented.  Interfaces can contain methods, but they 

cannot contain fields that store state. 

Figure 1.1 defines an interface named IFoo (the I prefix is a common 

naming convention used to signify an interface).  IFoo defines one member—a 

method named Bar.  The signature of Bar is defined by the interface, but the 

implementation is not.  If a class wishes to implement IFoo, it must define an 

implementation for all members of the interface and mark that the class 

implements the interface. 

IFoo should be thought of as a capability.  A class that implements IFoo 

supports the IFoo capability.  A class that implements an interface like 

IComparable would support comparison operations. 

Some programming languages use the term protocol instead of interface, 

since interfaces define an allowed set of interactions between components.  In 

interface IFoo 

{ 

    void Bar(); 

} 

Figure 1.1: IFoo Interface 
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some programming languages, such as Java, Objective-C, and C#, interfaces 

are supported directly with an explicitly defined syntax for the creation of 

interfaces. In other languages, such as C++, no special syntax exists for 

interfaces, but they can still be created by defining a class consisting only of pure 

virtual functions. 

A class can be marked as an implementor of one or more interfaces.  For 

example, consider Figure 1.2.  Notice that Foo explicitly marks itself as an 

implementation of IFoo and IComparable.  Foo also defines an implementation 

for all members found within IFoo (i.e. the Bar method) and IComparable (i.e. the 

CompareTo method).  If Foo did not implement all the members defined within 

IFoo and IComparable, this would be an invalid program. 

The same interface may be defined by multiple classes.  Each class can 

define its own implementation of the interface.  For example a program might 

define an ISerializable interface specifying methods for loading and saving an 

object from a stream.  Several classes could implement ISerializable, but the 

class Foo : IFoo, IComparable 

{ 

    void Bar() 

    { 

        /* implementation of Bar */ 

    } 

 

    int CompareTo(object other) 

    { 

        /* implementation of CompareTo */ 

    } 

} 

Figure 1.2: Foo Class 
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details of how to perform serialization could vary based on the structure of each 

implementor. 

Interfaces are abstract types.  Abstract types cannot be instantiated 

directly; instead they define the protocol that is supported by all implementors.  

Obtaining a reference to an interface type requires instantiating an implementor 

of the interface and assigning this instance to the interface reference.  We can 

create instances of Foo and assign them to a reference variable of type IFoo, but 

we cannot create an instance of IFoo itself since IFoo does not specify an 

implementation.  That requires an implementor, which in this case is Foo. 

Since Foo implements IFoo, instances of Foo can be used wherever 

instances of a class implementing IFoo is expected without type error (1).  In this 

way interfaces behave like base classes.  In Figure 1.3, both Baz and Raz accept 

a parameter named foo.  This parameter is known as a collaborator or 

dependency.  A collaborator helps another unit complete its task.  Likewise, since 

Baz and Raz cannot do their work without foo, they could be considered 

dependent of foo.  In other words, foo is a dependency of Baz and Raz. 

In both Baz and Raz the caller is required to specify the dependency 

supplied for foo.  Alternatively these methods could create their own 

dependencies.  In effect the Baz and Raz methods ask the caller for their 

dependencies, instead of looking for or creating their own.  When dependencies 

void Baz(IFoo foo) { /* implementation of Baz */ } 

void Raz(Foo foo) { /* implementation of Raz */ } 

Figure 1.3: Raz and Baz Methods 
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are provided by the caller, this is known as dependency injection or inversion of 

control.  Dependency injection greatly improves the flexibility of software 

systems.  Components that control the creation of their own dependencies fix the 

set of dependencies allowed to those created by the component itself.  The 

scoping and lifetime of these dependencies are also fixed by the component.  

When a component uses dependency injection, the control of both what the 

dependency is and its scope and lifetime are controlled by the caller.  This 

means that the same component can potentially be reused by many callers each 

having vastly different requirements.  Each caller simply provides the 

dependencies it needs (2). 

Baz can accept an instance of any type that implements the IFoo interface 

for the foo parameters.  This means that the Baz method can collaborate with 

any implementor of IFoo.  If a class that implements IFoo is later defined, Baz will 

be able to accept instances of this class as a parameter to foo without 

modification. 

Raz by contrast can only collaborate with Foo or one of its subclasses.  

While subclassing certainly is a mechanism for extensibility, it has limitations.  

Many programming languages only support inheritance from a single base class, 

limiting extensibility to a single type hierarchy.  In the example of Raz, only 

classes in a single hierarchy (the one that inherits from Foo) are suitable as a 

collaborator for the foo parameter.  Even in languages that support multiple 
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inheritance issues such as the diamond problem may discourage its use.  

Sometimes a class will not allow subclassing at all. 

Within a system, the degree to which components are aware of each other 

is known as coupling.  Components that have a high degree of awareness of 

each other are tightly coupled, whereas components with a low degree of 

awareness are loosely coupled.  Loose coupling is widely acknowledged as a 

characteristic of well designed systems.  The Baz method above is loosely 

coupled to Foo.  Neither Baz nor Foo is aware of the other—they share only the 

definition of the interface used to communicate between them. 

Loose coupling enables code reuse.  Existing components can gain new 

features and abilities by swapping out existing dependencies with new 

dependencies that implement the new capability.  The original component can be 

reused.  This enables programs that can support new features after they are 

written.  A program can be extended or customized by someone other than the 

original author without modifying the original program. 

Loose coupling also creates systems that are testable.  A system is 

testable when a small part of the program can be ran and tested independently of 

the rest of the program.  When a program is tightly coupled, running any 

component requires also running all of its dependencies.  This makes testing 

difficult because many different components need to be tested together.  

Sometimes dependencies are slow, complex, difficult to setup, or have side-
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effects that are undesirable for testing.  With loose coupling these dependencies 

can easily be replaced by lightweight mock dependencies. 

In Figure 1.4, Saz implements all the members defined on IFoo, however 

it does not explicitly mark itself as an implementation of IFoo.  Instances of Saz 

therefore are not suitable for the foo parameter of Baz.  Languages often require 

that classes explicitly mark their supported interfaces to avoid the risk that 

logically unrelated methods will inadvertently become correlated simply by virtue 

of their signatures matching.  It is possible that the Bar method in Saz is logically 

unrelated to the Bar method defined in IFoo, even though their signatures do 

match and Saz implements all the members of IFoo.  If the programmer that 

defined IFoo is also the author of Saz, there is little concern.  The compiler would 

quickly make the programmer aware of his mistake.  If Saz is logically related to 

IFoo, the programmer will then mark Saz as an implementor of IFoo and 

recompile. 

A more difficult problem arises if Saz was defined within a third-party 

library.  Software development projects often utilize libraries created by third-

parties.  These libraries are often presented as compiled binaries with no source 

class Saz 

{ 

    void Bar() 

    { 

        /* implementation of Bar */ 

    } 

} 

Figure 1.4: Saz Class 
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code provided.  If the Saz class were defined within such a library, a third-party 

programmer could not mark that Saz implements his IFoo interface. 

This becomes a serious issue when writing the Baz method.  Although an 

instance of Saz could be otherwise suitable for the foo parameter, the fact that it 

is not and cannot be marked as an implementation of IFoo means that instances 

of Saz are unsuitable for the Baz method. 

Despite the well known advantages of loose coupling that can be achieved 

by interfaces, many library authors are reluctant to use them extensively.  The 

essential problem with interfaces for library implementors is versioning.  As soon 

as a library using interfaces is published, third-party users may start 

implementing the interfaces in their own classes.  When the next version of the 

library is released, any new methods added to an interface will break users of the 

library since classes implementing the interface will not support the new 

methods.  This means that interfaces are essentially immutable when defined by 

authors of libraries used by third-party programmers. 

Objective: 

Loose coupling between types using interfaces provides flexible, testable, 

and extensible systems, but classes defined within third-party libraries frequently 

do not support interfaces because of versioning issues and cannot be modified 

because they are distributed in binary form.  We will develop an approach that 

provides loose coupling to third-party libraries without reducing reliability, 

maintainability, tooling support, or performance.  
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Course of Action: 

The existing approaches for solving this problem will be examined.  A 

practical approach for adding type-safe static-context duck typing to an object-

oriented programming language based on bytecode rewriting will be proposed.  

This approach should provide excellent reliability, tooling, maintainability, and 

performance. 
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Chapter 2. Background 

Tight coupling does not allow the flexibility required for testable and 

extensible systems.  When code is coupled directly, collaboration is restricted to 

a single type hierarchy, or in the case of classes that prohibit subclassing, to 

exactly one class.  This greatly limits our ability to support new capabilities or 

swap out implementations with mock implementations for testing.  Programmers 

end up writing tightly coupled code simply because it is typically the path of least 

resistance within a statically typed programming language. 

In the following sections, well known techniques for achieving loose 

coupling are examined in detail.  These techniques attempt to solve the problem 

outlined in the first chapter.  We will examine the tradeoffs involved with each 

approach. 

2.1. Wrapper Class 

A wrapper class is a class that delegates calls to an internal object 

instance, possibly of a different type.  A wrapper class can implement an 

interface by simply delegating calls to an instance of another class that does not 

implement the interface.  For example, Figure 2.1 shows how we could define a 

wrapper class called SazWrapper that allows loose coupling with the Saz class 

defined in Figure 1.4.  Since SazWrapper implements IFoo, instances can be 

passed as a collaborator to Baz.  Internally SazWrapper holds a reference to an 

instance of Saz.  Calls on SazWrapper simply delegate to the implementation on 
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Saz.  This approach allows the loose coupling and extensibility of interfaces and 

the ability to reuse third-party classes while maintaining loose coupling. 

Since SazWrapper implements IFoo, instances can be passed as a 

collaborator to Baz.  Internally SazWrapper holds a reference to an instance of 

Saz.  Calls on SazWrapper simply delegate to the implementation on Saz. 

Wrapper classes eliminate the coupling problem, but they add 

maintainability and writability problems.  The number of types within a system 

can dramatically increase when using wrapper classes.  Large programs could 

reference hundreds of third-party classes, each requiring a wrapper class.  Each 

of these wrapper classes must be written and maintained.  The code within these 

wrapper classes does not add any new functionality to the software, it really only 

exists to satisfy the compiler.  The sole purpose of the SazWrapper class in 

Figure 2.1 is to convince the compiler that it is acceptable to use instances of 

Saz as an implementation of IFoo. 

Since wrapper classes must be manually created, implementation errors 

can lead to reliability problems.  For example imagine that SazWrapper had 

instead been implemented as shown in Figure 2.2.  The programmer forgot to 

class SazWrapper : IFoo 

{ 

    Saz _saz; 

    SazWrapper(Saz saz) { _saz = saz; } 

    void Bar() { _saz.Bar(); } 

} 

Figure 2.1: SazWrapper Wrapper Class 
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delegate the call to Bar to the implementor _saz.  In general these kinds of errors 

cannot be detected by the compiler when wrapper classes are created manually. 

Wrapper classes allow excellent tooling support.  Code completion editors 

and refactoring tools will work with wrapper classes.  Since wrapper classes are 

no different than any other class defined within an application, code editors can 

provide helpful code completion hints and refactoring tools will correctly rename 

symbols defined within the wrapper classes. 

Wrapper classes will have a minor impact on performance.  The wrapper 

classes themselves will increase the code space required for an application.  A 

small amount of extra memory usage will be required for the wrapper class 

instance.  Calls through a wrapper class will also incur the run-time overhead of 

an additional virtual method call.  This overhead is probably insignificant for most 

applications and hardware configurations. 

2.2. Duck Typing 

Another possibility is to consider an alternative typing strategy known as 

duck typing.  Duck typing is named after the duck test (3).  The duck test states: 

“If it looks like a duck, swims like a duck, and quacks like a duck, then it probably 

class SazWrapper : IFoo 

{ 

    Saz _saz; 

    SazWrapper(Saz saz) { _saz = saz; } 

    void Bar() { /* delegation to _saz forgotten */ } 

} 

Figure 2.2: Incorrect SazWrapper Wrapper Class 
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is a duck.”  Duck typing applies this concept to typing within a programming 

language.  With duck typing, type compatibility is determined by looking at the set 

of methods defined on an object rather than the classes it inherits from or the 

interfaces it implements. 

Many programming languages have support for duck typing.  Although 

most commonly associated with dynamic typing, duck typing actually takes one 

of two forms: static-context duck typing and dynamic-context duck typing. 

2.2.1. Dynamic-Context Duck Typing 

Dynamic-context duck typing involves determining at run-time whether a 

given object supports the methods that are actually called.  At the point of run-

time method invocation the variable is searched for a method matching the 

caller's signature.  If the method is found it is invoked, otherwise a run-time error 

is thrown.  Dynamically typed languages typically use dynamic-context duck 

typing, but some statically typed languages have special syntax causing the 

compiler to emit statements delaying the method binding until run-time. 

Python's type system uses duck typing extensively.  Figure 2.3 

demonstrates Python's use of duck typing.  Notice that the foo parameter to Baz 

has no explicit type name. The type of foo does not matter.  If the parameter 

passed to foo has a Bar method it will be called, otherwise there will be an error. 
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Objective-C supports both static and dynamic typing.  Normally the type of 

a variable is specified and typing is static, but the programmer may use the 

keyword id in place of a type.  This indicates that the variable uses dynamic 

typing, and an object of any type may be assigned to it (4).  Figure 2.4 shows an 

example.  Since we wish to employ dynamic-context duck typing within Baz, we 

specify id as the type for the foo parameter.  When Baz calls the Bar method on 

foo, the run-time system determines if the object passed to Baz actually had a 

Bar method.  If it does then Bar is invoked; otherwise Baz will raise an exception 

that will terminate the program unless correctly handled. 

Dynamic-context duck typing is also possible with version 4.0 of C#.  

Figure 2.5 shows an example within C#.  C# uses the keyword dynamic to 

indicate the object may be of any type and that it bypasses compile-time static 

typing (5).  As with Objective-C, C# also supports static typing.  Both of these 

languages intend for static typing to be used wherever possible, but enable 

switching to dynamic typing when static typing proves too difficult, inflexible, or 

inconvenient. 

class Saz: 

    def Bar(self): 

        print("Saz.Bar()") 

 

def Baz(foo): 

    foo.Bar() 

 

Baz(Saz()) 

Figure 2.3: Dynamic-Context Duck Typing in Python 
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#import <Foundation/Foundation.h> 

 

@interface Saz : NSObject 

{ 

} 

 

-(void) Bar; 

 

@end 

 

@implementation Saz 

 

-(void) Bar { 

    NSLog(@"[Saz Bar]"); 

} 

 

@end 

 

void Baz(id foo) { 

    [foo Bar]; 

} 

 

int main (int argc, const char * argv[]) { 

    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] 

init]; 

 

    Saz *saz = [[Saz alloc] init]; 

    Baz(saz); 

    [saz release]; 

 

    [pool drain]; 

    return 0; 

} 

Figure 2.4: Dynamic-Context Duck Typing in Objective-C 
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Dynamic-context duck typing is obviously extremely flexible.  It is also 

extremely dangerous.  Even small mistakes, such as a mistyped method name 

will not be discovered until run-time.  It also means tools that depend on static 

type information will be ineffective.  Code completion editors will be unable to 

offer hints, as the available methods will be unknown until run-time.  Refactoring 

tools will be unable to identify required changes within dynamically typed 

variables.  The loss of these features mean significant reduction in programmer 

productivity. 

With dynamic-context duck typing the Baz method can be written to 

accept an object of any type.  Only when Baz actually called the Bar method 

would the run-time system actually determine if the object passed to Baz actually 

using System; 

 

class Saz 

{ 

    public void Bar() { Console.WriteLine("Saz.Bar()"); } 

} 

 

class Program 

{ 

    static void Baz(dynamic foo) 

    { 

        foo.Bar(); 

    } 

 

    static void Main(string[] args) 

    { 

        Baz(new Saz()); 

    } 

} 

Figure 2.5: Dynamic-Context Duck Typing in C# 4.0 
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had a Bar method.  If the method did not exist on the object a run-time error 

would occur. 

Perhaps the biggest advantage of dynamic-context duck typing is the ease 

at which loose coupling is achieved.  In a language such as Python, no extra 

work is required to achieve loose coupling.  This makes components extremely 

flexible and testable.  Unfortunately since checks that would normally be 

performed at compile-time in a statically typed language are delayed until run-

time many more tests are required. 

2.2.2. Static-Context Duck Typing 

Static-context duck typing applies the duck test given the type information 

available at compile-time.  C++ templates are a widely known example of static-

context duck typing (6).  The compiler will check that all methods called from a 

variable whose type is a template parameter are implemented by all types for 

which the template is expanded. 

In Figure 2.6, Baz is a function template.  The type of Baz's foo parameter 

is the type parameter T.  Since a method named Bar is called off the foo 

parameter, all types passed to Baz as the type parameter T must support a Bar 

method.  If Baz was passed a type that did not support a Bar method, a compile-

time error would result.  Also notice that the supported signature allowed for the 

Bar method is inferred by its usage and never explicitly defined.  In the example 

a Bar method that returned a value would also be valid. 
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Dynamic-context duck typing is slightly more flexible than the static-

context duck typing within C++.  With dynamic-context duck typing an object only 

needs to implement those methods actually called at run-time.  With C++ static-

context duck typing any method that might be called must be implemented, even 

#include <iostream> 

using namespace std; 

 

// C++ interfaces are classes with no fields 

// and only pure-virtual (abstract) methods 

class IFoo 

{ 

public: 

    virtual void Bar() = 0; 

}; 

 

class Saz 

{ 

public: 

    void Bar() 

    { 

        cout << "Saz::Bar()" << endl; 

    } 

}; 

 

template<typename T> 

void Baz(T &foo) 

{ 

    foo.Bar(); 

} 

 

int main() 

{ 

    Saz s; 

    Baz<Saz>(s); 

 

    return 0; 

} 

Figure 2.6: Static-Context Duck Typing in C++ 
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if that method does not get called at run-time.  Additionally types unknown at 

compile time are unavailable. 

Dynamic-context duck typing is slightly more flexible than the static-

context duck typing within C++.  With dynamic-context duck typing an object only 

needs to implement those methods actually called at run-time.  With C++ static-

context duck typing any method that might be called must be implemented, even 

if that method does not get called at run-time.  Additionally types unknown at 

compile time are unavailable. 

In Figure 2.7, an instance of Yaz is created and assigned to w.  So the 

run-time type of w is Yaz but the compile-time type is Waz.  Since the Waz class 

does not define a suitable implementation of the Bar method, w cannot be 

passed to the Baz method.  If the checking was delayed until run-time, the Bar 

method would be found. 
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Static-context duck typing enjoys reliability and performance advantages 

over dynamic-context duck typing.  Since type checking is performed at compile-

time, a mistyped method name can easily be corrected at compile-time.  With 

dynamic-context duck typing, these errors might not occur until the user sees the 

program crash.  Since static-context duck typing allows the binding to occur at 

#include <iostream> 

using namespace std; 

 

class Waz 

{ 

}; 

 

class Yaz : public Waz 

{ 

public: 

    void Bar() 

    { 

        cout << "Yaz::Bar()" << endl; 

    } 

}; 

 

template<typename T> 

void Baz(T &foo) 

{ 

    foo.Bar(); 

} 

 

int main() 

{ 

    Waz *w = new Yaz(); 

    Baz<Waz>(*w); // compiler-error 

    delete w; 

 

    return 0; 

} 

Figure 2.7: Static-Context Duck Typing in C++ Fails to Locate Methods Available only at Run-Time 
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compile-time, there is less run-time performance overhead associated with the 

method lookup. 

Since C++ static duck typing syntax infers the typed requirements based 

on usage it does have some limitations.  Logical incongruities can happen if 

unrelated types happen to support the same methods.  In Figure 2.8, CreditCard 

and Rhinoceros both have a Charge method, however they are completely 

unrelated.  The FinalizePurchase function accepts a type parameter T.  Since 

FinalizePurchase calls the Charge method off an instance of T, any parameter 

for T must have a Charge method.  FinalizePurchase is meant to finalize a credit 

card transaction.  No error will be reported if an instance of Rhinoceros is passed 

to FinalizePurchase, even though it will not produce the desired effect. 
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A related problem with the C++ static duck typing syntax is a lack of 

sufficient compile time type information for tooling. Since literally any call could 

be valid, code completion editors cannot possibly offer suggestions for variables 

whose type is supplied as a template parameter.  Similarly automatic refactoring 

tools lack the type information needed to apply correct transformations.  For 

example, if the Charge method within the CreditCard class were renamed, the 

class CreditCard { 

public: 

    void Charge() {} // withdraws money 

}; 

 

class Rhinoceros { 

public: 

    void Charge() {} // runs toward foe 

}; 

 

// Accepts any reference that has Charge method, with 

// the idea that some credit card classes do not derive 

// from CreditCard 

template<typename T> 

void FinalizePurchase(T &card) { 

    card.Charge(); 

    /* other side effect of charging credit card */ 

} 

 

int main() { 

    CreditCard visa; 

    Rhinoceros rhino; 

 

    FinalizePurchase<CreditCard>(visa); 

 

    // compiles, but produces unintended effect 

    FinalizePurchase<Rhinoceros>(rhino);  

 

    return 0; 

} 

Figure 2.8: Logical Incongruity using Static-Context Duck Typing in C++ 
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refactoring tool could not automatically infer that the call site within 

FinalizePurchase should also be renamed.  Lack of code completion and 

refactoring tools significantly limit programmer productivity. 

2.3. Dynamic Metaprogramming 

Another way to solve the third-party library coupling problem within a 

statically typed programming language is via a metaprogramming (7) (8). With 

this approach program generates another dynamically linked program containing 

the required wrapper classes at run-time.  Essentially this approach is another 

take on wrapper classes, but unlike the manually written wrapper classes from 

section 2.1, the wrapper class generation is done automatically by a library at 

run-time. 

In Chapter 1, Baz required an instance of IFoo.  Saz supports all the 

methods defined on IFoo, but is not marked as an implementation of IFoo.  Since 

Saz is defined within a third-party for which we are provided only the binaries, we 

cannot simply mark Saz as an implementor of IFoo and recompile.  Instead we 

call the dynamic_duck_cast function shown in Figure 2.9.  This function 

dynamically generates a wrapper class like the SazWrapper shown in Figure 2.1. 
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Implementing dynamic_duck_cast requires several things.  First we need 

to dynamically examine the set of methods supported by obj.  This requires some 

kind of reflection.  In other words, compile time metadata, such as the set of 

methods defined on a type, must be made available at run-time.  This feature can 

be implemented manually, but is generally preferable if implemented by the 

programming language itself.  This provides better assurances that the metadata 

will be available, accurate, and accessible in a standard way. 

Since machine code is tied to a single machine architecture, any dynamic 

code generation is either tied to a specific machine architecture or requires an 

interpreted language.  Alternatively, dynamically generated code can target a 

virtual machine architecture, thereby supporting any physical architecture that the 

virtual machine supports.  Programming systems that run on a virtual machine 

architecture often support dynamic code generation. 

Languages such as Java or .NET programming languages support all the 

features required to implement this metaprogramming implementation.  Both 

T dynamic_duck_cast<T>(object obj) 

{ 

 // 1. dynamically examine the methods supported on obj 

 // 2. determine if obj contains all methods defined on T 

 //    2a. otherwise generate error 

 // 3. generate a library containing a wrapper class 

 // 4. create an instance of the wrapper passing in obj 

 // 5. return the instance of the wrapper 

} 

 

Baz(dynamic_duck_cast<IFoo>(new Saz())); 

Figure 2.9: dynamic_duck_cast Method and Example Usage 
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have a rich metadata systems.  Since both run on virtual machines, platform-

independent dynamic code generation is relatively easy.  Both support dynamic 

code loading and linking. 

The metaprogramming approach is good for productivity and 

maintainability.  Since wrapper classes are generated automatically, programmer 

productivity is increased and maintenance costs are decreased.  There is much 

less risk of errors within the wrapper class.  Unlike the C++ syntax, duck types 

are created based on a named interface so tools requiring static type information, 

such as code completion editors and refactoring tools, are possible. 

Unfortunately the metaprogramming approach suffers from poor reliability 

and performance.  Since the dynamic metaprogramming approach is an example 

of dynamic-context duck typing, it has the reliability problems described in 

section 2.2.1.  If the type parameter T passed to dynamic_duck_cast is 

incompatible with the object passed to obj, a run-time error will occur.  In many 

cases all the information required to prevent this error is available at compile-

time. 

One advantage of this approach over the C++ syntax is that it suffers 

much less from the problem of logical incongruities resulting from types that 

happen to support the same methods.  With the C++ approach, types could 

accidentally support the implicit interface required on the type parameter.  With 

the metaprogramming approach the programmer is required to make an explicit 

dynamic_duck_cast.  Of course the programmer could still make the same 
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mistake allowed by C++, but it would be much less likely because of the explicit 

cast.  Figure 2.10 shows dynamic_duck_cast using the credit card and 

rhinoceros example from Figure 2.8. 

interface ICreditCard { 

    void Charge() {} // withdraws money 

} 

 

class CreditCard { 

    void Charge() {} // withdraws money 

}; 

 

class Rhinoceros { 

    void Charge() {} // runs toward foe 

}; 

 

void FinalizePurchase(ICreditCard card) { 

    // full static type tooling now possible: 

    //  - rename on Charge is possible 

    //  - code completion for card is possible 

    card.Charge(); 

} 

 

int main() { 

    CreditCard visa = new CreditCart(); 

    Rhinoceros rhino = new Rhinoceros(); 

     

    FinalizePurchase(dynamic_duck_cast<ICreditCard>(visa)); 

 

    // The following error is less likely than in C++. The 

    // programmer must explicitly say that a Rhinoceros 

    // is suitable as an implementor of ICreditCard. 

    FinalizePurchase( 

dynamic_duck_cast<ICreditCard>(rhino)); 

 

    return 0; 

} 

Figure 2.10: Logical Incongruity using dynamic_duck_cast (Java or C# like language) 
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Since the metaprogramming dynamic-context duck typing approach 

generates wrapper classes at run-time it can incur a significant overhead.  

Although wrapper class types can be cached after their initial generation, each 

call to dynamic_duck_cast with a new type parameter will cause new code to be 

dynamically compiled.  This approach also requires analysis of reflection 

metadata at run-time to guarantee type compatibility.  Even with caching of 

wrapper class types this approach can cause noticeable delays during code 

generation. 
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Chapter 3. Design 

As seen in the previous chapter there are many existing approaches that 

achieve loose coupling to third-party libraries within object-oriented programming 

languages, however these approaches suffer from reliability, tooling, 

maintainability, and performance problems.  Having examined several 

approaches, we now design an approach that enables loose coupling between 

components while still enabling high reliability, good tooling support, high 

maintainability, and relatively good performance. 

We describe two possible implementations for the design.  The first, 

language modification, is most suitable for language designers and implementors 

and will be explained but not implemented.  The second, bytecode rewriting, is 

suitable as an extension to an existing language and will be explained and 

implemented. 

3.1. Language Modification 

One approach for enabling loose coupling to third-party components is to 

extend the language. 

Figure 3.1 shows an example of a language extension that allows for 

static-context duck typing by adding an asduck operator to the language.  The 

asduck operator has two parameters.  The first is a variable reference that 

precedes the asduck operator.  The second parameter is an interface type name 

that follows the operator.  At compile time, the variable's compile time type is 
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examined for duck compatibility.  If class X implements all members defined on 

interface Y, but X is not necessarily marked as an implementation of Y, then X is 

duck compatible with Y.  If the interface type parameter is not duck compatible 

with the compile-time type of the variable a compile-time error occurs, otherwise 

the operator simply returns an instance of the interface type parameter. 

This language feature could be implemented by having the compiler 

generate a wrapper class like SazWrapper shown in Figure 2.1.  Unlike the 

metaprogramming approach, language modification would not require run-time 

reflection metadata.  The wrapper classes are generated by the compiler, which 

will have access to compile-time metadata even if this is not available at run-

time.  Additionally this would not require generation of code at run-time, so a 

virtual machine architecture or dynamic module loading would not be required.  

interface IFoo { 

   void Bar(); 

}; 

 

class Saz { 

    void Bar() {} 

}; 

 

void Baz(IFoo foo) { 

    foo.Bar(); 

} 

 

int main() { 

    Saz s = new Saz(); 

    Baz(s asduck IFoo); // new asduck cast operator 

 

    return 0; 

} 

Figure 3.1: Language Modification (Java or C# like language) 
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These reduced requirements might make this approach more feasible for 

languages without the required metadata and run-time code generation features. 

Like the metaprogramming approach, language extension is good for 

maintainability.  Wrapper classes are automatically generated by the compiler, so 

no programmer maintenance is required.  The overall amount of code required to 

achieve loose coupling is reduced.  Generally with all other things being equal, 

given two programs that have the same behavior the one that has less code will 

be more maintainable because there is simply less code to maintain.  Since 

wrapper classes are automatically generated by the compiler the risk of 

programmer error within these classes is greatly reduced. 

The biggest advantage of the language modification approach is probably 

reliability.  Since duck compatibility is determined at compile-time, duck 

compatibility errors cannot occur at run-time.  This is a huge advantage over 

dynamic-context duck typing.  It is also a big advantage over the 

metaprogramming approach where accidentally using a type that was not duck 

compatible resulted in a run-time error.  With language modification these errors 

are detected earlier.  It is generally accepted that detecting errors earlier 

improves reliability. 

The language modification approach is good for performance.  The 

overhead is equal to that of manually writing wrapper classes; that is, one extra 

virtual method call for each duck type method invocation.  Virtual method 

invocations are certainly slower than non-virtual calls, but virtual method calls are 
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much faster than the dynamic lookup typically required for dynamic-context duck 

typing.  Additionally since the wrapper classes are generated at compile time, 

language modification does not incur the cost of determining duck type 

compatibly and dynamic code generation at run-time. 

Language modification as proposed here is an example of static-context 

duck typing.  As shown earlier static-context duck typing is slightly less flexible 

than dynamic-context duck typing, but has better reliability.  For most cases 

static-context duck typing is flexible enough, and for those cases in which it is not 

a programmer could use an existing language feature or library for dynamic-

context duck typing.  Since static and dynamic context duck typing are not 

mutually exclusive, this language modification is not less flexible than dynamic-

context duck typing; it is just more reliable whenever applicable. 

Although the language modification approach enjoys the possibility of 

tooling such as code completion editors and refactoring tools, any existing tooling 

for a language would be broken causing frustration and reduced productivity for 

programmers accustomed to such tooling.  Of course these tools could be 

updated, but the likelihood of this occurring depends on who makes the update. 

If these language changes were made outside a controlling standards 

body for the language, it would cause a branch in the language—essentially 

creating a whole new language.  This new language's evolution would then split 

from the original.  Any improvements made to the original language, compilers, 

or tooling would either not be available to users of the new language or require a 
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difficult, and perhaps unlikely, reunification.  Programmers may fear these 

extensions because of their potential to isolate the programmer from the larger 

community of the original language. 

Language modification is probably most suitable if designed by the group 

controlling the language specification and implemented by the major compiler 

vendors for the language.  If designed and implemented at this level, the 

language modifications would enjoy excellent tooling support.  Future additions to 

the language would also include the duck typing extensions.  Compilers 

themselves are complex pieces of software and making these language 

modifications could be quite difficult. 

Changing a programming language with a large user base is an incredibly 

difficult task.  Small changes in the language can have subtle and unanticipated 

consequences.  Adding new keywords might break existing programs that 

happened to use that keyword for a variable name.  Many compiler vendors will 

need to update their compiler software.  Tooling infrastructure will also require 

modification.  After release, an error in a language specification is difficult to 

correct.  Programs will have already been written against the flawed 

specification, and simply correcting the flaw could break these programs. 

Features added directly to a language can make the language more 

difficult to understand.  Even if a programmer is unaware of a new feature, he or 

she might still encounter code written by other programmers that makes use of a 

feature.  At this point the programmer will probably need to study and understand 
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this new feature.  With every feature the amount of study required to master all 

the language's features increases.  While language features can improve the 

ease of expressing ideas within the language, they also increase the time 

required by programmers to fully understand the language.  Since language 

features are likely to be encountered by all users of a language, features only 

useful to a subset of the language's community should probably be implemented 

in libraries whenever possible. 

Language extensions have some compelling advantages, but ultimately 

they are only practical if designed by the body in control of the language. 

3.2. Bytecode Rewriting 

Another approach for supporting static-context duck typing is compile-time 

metaprogramming or bytecode rewriting.  Bytecode rewriting is a technique for 

implementing features that would normally require language modification within a 

library.  Unlike the language modification implementation described in section 

3.1, this approach is practical even if done outside the body controlling a 

language. 

Many languages have a relatively high-level bytecode instruction set.  For 

example Java and .NET define virtual machines supporting high-level instruction 

sets.  This bytecode serves as a machine independent intermediate language.  

Language compilers targeting the virtual machine run-time output this bytecode 

rather than machine code.  At run-time the virtual machine takes the bytecode 

instructions and compiles them to native machine code.  For performance, native 
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code can be cached to avoid re-compilation or interpretation costs for 

subsequent calls.  This process is known as just-in-time compilation and is 

implemented on the primary virtual machines for both Java and .NET. 

With bytecode rewriting a specially designed tool takes another program 

as an input.  The tool disassembles the input program, changes it in some way, 

then reassembles the program as output.  During this manipulation phase 

custom features normally requiring compiler support can be implemented.  

Although theoretically this technique could be employed for languages outputting 

machine code directly, bytecode preserves just enough of the original code 

structure to make this process much easier.  The bytecode rewriter can easily 

identify elements within the compiled source program that it wishes to modify. 

On the surface this approach looks much like dynamic-context 

metaprogramming.  In fact the API as used by the programmer could look exactly 

the same.  The programmer has a library that allows him to request a duck for 

some compatible interface type.  Unlike the dynamic metaprogramming 

approach, bytecode rewriting requires the the object's compile time type to be 

duck compatible with the target interface type.  The API might look something 

like Figure 3.2. 

TDestination 

static_duck_cast<TDestination, TSource>(TSource source) 

{ 

    throw error; 

} 

Figure 3.2: static_duck_cast Method 
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Under the surface the bytecode rewriting approach is much different.  A 

program author that wishes to use duck typing within his project would need to 

include the duck typing library.  This is exactly the same as what would be 

required with the dynamic metaprogramming approach, but the implementation 

of this library is dramatically different.  Unlike the implementation overviewed in 

Figure 2.9, this library does nothing.  The program built against the static duck 

typing library may be compiled using any compiler targeting the bytecode format 

supported by the bytecode rewriting tool.  So a bytecode rewriting tool supporting 

the Common Intermediate Language (CIL) bytecode format used by .NET could 

rewrite programs written in C#, Visual Basic.NET, or any other .NET language.  

After compilation of the source program, it is sent to the bytecode rewriting tool—

ideally as a post build operation. 

The bytecode rewriting tool examines the input program looking for call 

sites where a duck type is requested.  When a call site is found the following 

operations are performed: 

1. Determine the members supported on instances of the source type 

(TSource). 

2. Determine the members required on instances of the destination 

type (TDestination). 

3. Determine if the source type contains compatible members for all 

members on the destination type. 

a. otherwise generate an error 
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4. Generate a wrapper class implementing all members of 

TDestination by delegation to the compatible member found on the 

source type contained within the wrapper.  Add this wrapper type to 

the output program. 

5. Modify all call sites to create a duck (e.g. static_duck_cast) to 

create an instance of the generated wrapper class, passing the 

source instance to the wrapper class. 

6. Write out the modified program. 

Although these steps are fairly similar to the dynamic metaprogramming 

approach, there are a few important differences.  First, all these steps are 

performed as part of the build process.  The steps required for dynamic 

metaprogramming are performed at run-time.  Second, since the bytecode 

rewriting is performed at compile-time, the actual run-time members supported 

on the instance of TSource supplied for the source parameter are not examined, 

only the members defined on TSource are considered when checking for duck 

compatibility.  Third, and perhaps most importantly, the errors determined in step 

3a are reported at build-time.  Any incorrect usage can be easily corrected by the 

programmer at this point before the error reaches the user.  Fourth, all of the 

overhead associated with performing these operations occurs at build-time.  With 

the dynamic metaprogramming approach, the overhead of determining duck 

compatibility and code generation was left until run-time.  The only overhead still 

present at run-time is that of the wrapper class.  While the wrapper class 
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certainly will add overhead, it is probably by far the lowest run-time overhead of 

any of the methods discussed for achieving loose coupling to third-party libraries 

that do not define interfaces.  In fact this approach generates code that is 

basically indistinguishable from the manually written wrapper classes, with 

equally little run-time overhead. 

3.2.1. Novelty 

 The novelty of this approach lies in its migration of wrapper class 

generation from run-time to build-time.  This allows us to keep the maintenance 

advantages found with automatically generated wrapper classes without 

introducing any new reliability or performance issues.  Duck compatibility errors 

that would occur at run-time with the dynamic metaprogramming approach are 

shown to the programmer sooner, increasing the reliability of software.  

Additionally the performance impact related to run-time code generation is 

mitigated by performing the code generation at build-time. 

3.3. .NET Implementation 

We now examine a .NET example implementation created using the 

bytecode rewriting implementation of the static-context duck typing design 

presented within section 3.2. 

3.3.1. Tools 

The following tools and libraries were utilized in the creation of this .NET 

implementation. 
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MSIL Assembler 

MSIL1 Assembler is a tool written by Microsoft designed to take a text file 

containing MSIL instructions and produce a compiled executable or library (9). 

Figure 3.3 shows a simple hello world program written in CIL.  The MSIL 

Assembler takes a text file like Figure 3.3, containing CIL instructions, and 

outputs a compiled binary executable or library containing bytecode instructions. 

MSIL Disassembler 

MSIL Disassembler is a tool written by Microsoft designed to take a 

compiled .NET program as an input and produce a text file containing MSIL 

instructions (10).  This output can be provided as an input to MSIL Assembler. 

Given a compiled hello world program written in any .NET language MSIL 

Disassembler would produce an output similar to Figure 3.3. 

                                            
1
 The bytecode format used within the .NET Framework was originally known as Microsoft 

Intermediate Language (MSIL).  During the standardization of .NET Framework components, 
MSIL was renamed Common Intermediate Language (CIL), but several tools still refer to CIL by 
its original name. 

.class private auto ansi beforefieldinit Program 

       extends [mscorlib]System.Object 

{ 

  .method private hidebysig static void  Main() cil managed 

  { 

    .entrypoint 

    .maxstack  8 

    IL_0000:  ldstr "Hello World!" 

    IL_0005:  call void  

            [mscorlib]System.Console::WriteLine(string) 

    IL_000a:  ret 

  } 

} 

Figure 3.3: Hello World in CIL (abridged) 
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DeftTech.DuckTyping 

DeftTech.DuckTyping is a library written by David Meyer (7).  This library 

implements dynamic-context duck typing for the .NET framework as described in 

section 2.2.1. 

System.Text.RegularExpressions 

System.Text.RegularExpressions is a regular expression processing 

library built into the .NET Framework.  It can search input text for specific 

patterns using a special regular expression syntax. 

Red Gate’s .NET Reflector 

.NET Reflector is a tool that takes compiled .NET software and reverse 

compiles it to several source languages (11).  The tool applies heuristics based 

on knowledge of how compilers perform CIL code generation.  This tool can take 

a compiled .NET program and show an approximation of the original source. 

3.3.2. Components 

The following components were built for the .NET implementation. 

DuckTyping.Contracts 

DuckTyping.Contracts is a dynamic-link library (DLL) written in C# that 

contains the contracts allowing a programmer to request a duck type.  This DLL 

contains the .NET implementation of the static_duck_cast operator shown in 

Figure 3.2.  The source listing of this component is shown in Figure 3.4. 



www.manaraa.com

39 
 

The AsDuck method uses the C# extension method syntax.  In C# an 

extension method is a static method that may be called using instance method 

syntax (12).  In .NET all types derive from System.Object, which is aliased by the 

C# keyword object.  Since the AsDuck method extends System.Object, it may be 

called as an instance method from any object so long as the 

DuckTyping.Contracts library is referenced. 

Programs that use this .NET implementation must reference the 

DuckTyping.Contracts library during compilation, but the library is not needed at 

run-time.  This library provides the hooks that are used by the bytecode rewriting 

tool. 

ilrewrite 

ilrewrite is the bytecode rewriting tool for the .NET implementation.  This 

tool takes a compiled .NET program as its input.  The program takes this input 

using System; 

 

namespace DuckTyping.Contracts 

{ 

    public static class DuckType 

    { 

        public static TDestination 

        AsDuck<TSource, TDestination>(this TSource source) 

            where TDestination : class 

        { 

            throw new NotImplementedException(); 

        } 

    } 

} 

Figure 3.4: DuckTyping.Contracts 
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program and calls the MSIL disassembler to get a textual representation of the 

input program's CIL code.  Next the tool uses a regular expression to search the 

CIL for sites where the AsDuck extension method from the DuckTyping.Contracts 

DLL is called.  At each call site the source and destination types are examined 

for duck compatibility using the DeftTech.DuckTyping library.  If the destination 

type is not duck compatible with the source type an error is recorded, otherwise 

the DeftTech.DuckTyping library is used to dynamically create a DLL containing 

a wrapper class.  The wrapper contains an instance of the source type and 

implements the destination interface though delegation to the source type 

instance.  Each call site to the AsDuck method within the input program is then 

replaced with an instantiation of the appropriate wrapper class.  The source 

parameter to AsDuck is passed as the input argument to the wrapper class.  Next 

the MSIL disassembler is again called for each of the wrapper class DLLs 

generated by the DeftTech.DuckTyping library.  The CIL code for each wrapper 

class is merged into the output CIL.  Finally the output CIL code is passed to the 

MSIL assembler to create the compiled output software. 

3.3.3. Example 

The program from Figure 3.6 references a third party library.  The source 

code for this library is shown in Figure 3.5, but the programmer that wrote the 

code in Figure 3.6 does not have access to this source.  The programmer was 

given only the compiled binary file that contains Saz, so he cannot simply mark 

Saz as an implementor of IFoo. 
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To maintain loose coupling the programmer defined the IFoo interface and 

wrote Baz so it is coupled only to the IFoo interface.  Since the Saz class is not 

marked as an implementor of IFoo, the saz reference cannot be directly passed 

to Baz.  It is possible to call the AsDuck extension method shown in Figure 3.4. 

If the programmer were to build and run the program shown in Figure 3.6 

it would crash at run-time upon encountering the call to the AsDuck extension 

using System; 

 

public class Saz 

{ 

    public void Bar() 

    { 

        Console.WriteLine("Saz.Bar()"); 

    } 

}; 

Figure 3.5: Source Code of Third-Party Library Containing Saz (C# language) 

using System; 

using DuckTyping.Contracts; 

 

public interface IFoo { 

    void Bar(); 

}; 

 

static class Program { 

    static void Baz(IFoo foo) { 

        foo.Bar(); 

    } 

 

    static void Main() { 

        var saz = new Saz(); 

        Baz(saz.AsDuck<Saz, IFoo>()); 

    } 

}; 

Figure 3.6: Example Input Program (C# language) 
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method.  Recall from the definition of AsDuck shown in Figure 3.4 that it simply 

throws a NotImplementedException.  Instead however the programmer takes the 

output program created from compiling Figure 3.6 and passes it as an input to 

ilrewrite.  Ideally this is an automatic post build step in the build script. 

In Figure 3.7 the CIL code from the Main method in Figure 3.6 is shown as 

ilrewrite would see the compiled input program.  The call to AsDuck as well as 

the type parameters are clearly visible in the assembly listing.  In this case the 

source type is Saz (defined within the library named ThirdParty) and the 

destination is IFoo.  ilrewrite uses a regular expression to locate this call site and 

extract the type parameters. 

.method private hidebysig static void  Main() cil managed 

{ 

.entrypoint 

.maxstack  1 

.locals init ([0] class [ThirdParty]Saz saz) 

IL_0000:  nop 

IL_0001:  newobj instance void [ThirdParty]Saz::.ctor() 

IL_0006:  stloc.0 

IL_0007:  ldloc.0 

IL_0008:  call !!1 [DuckTyping.Contracts] 

    DuckTyping.Contracts.DuckType:: 

    AsDuck<class [ThirdParty]Saz,class IFoo>(!!0) 

IL_000d:  call void Program::Baz(class IFoo) 

IL_0012:  nop 

IL_0013:  ret 

} 

Figure 3.7: CIL Listing of Main method within Figure 3.6 before Transformation 
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After locating the call sites, ilrewrite calls into the DeftTech.DuckTyping 

library to determine type compatibility.  This library was originally written to 

perform dynamic-context duck typing at run-time, but was modified slightly to 

perform static-context duck typing at compile-time.  When ilrewrite runs, any 

duck-compatibility problems are reported.  Since Saz implements all the methods 

defined on the IFoo interface, there are no duck incompatibilities so the bytecode 

rewriting process continues. 

For each unique source/destination type pair within the input program 

ilrewrite generates a wrapper class.  The wrapper class created from the call to 

AsDuck within Main in Figure 3.6 is shown in Figure 3.8.  The wrapper class is 

shown as C# code after reverse compiling the generated class from the compiled 

CIL using Red Gate's .NET Reflector. 

The actual call site where the AsDuck extension method is called is 

replaced by an instantiation of the wrapper class.  Since CIL is a stack-based 

assembly language, and since both the wrapper class constructor and the 

internal class DuckProxy_Saz : IFoo { 

    private readonly Saz duck; 

 

    internal DuckProxy_Saz(Saz A_1) { 

        this.duck = A_1; 

    } 

 

    public sealed override void Bar() { 

        this.duck.Bar(); 

    } 

} 

Figure 3.8: Generated DuckProxy_Saz Wrapper Class (C# Language) (abridged) 
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AsDuck method both take a single argument of type TSource and return an 

object of type TDestination, it is possible to simply replace the call to the AsDuck 

method with a newobj instruction using the wrapper class constructor.  This 

works because both statements have the same stack semantics.  Figure 3.9 

shows the CIL after being transformed by ilrewrite.  Figure 3.10 shows Figure 3.9 

as C# code, again using Red Gate's .NET Reflector to reverse compile the output 

program. 

After determining duck type compatibility, merging in generated wrapper 

classes, and modifying AsDuck call sites, the modified CIL listing is passed to the 

.method private hidebysig static void  Main() cil managed 

{ 

.entrypoint 

.maxstack  1 

.locals init ([0] class [ThirdParty]Saz saz) 

IL_0000:  nop 

IL_0001:  newobj instance void [ThirdParty]Saz::.ctor() 

IL_0006:  stloc.0 

IL_0007:  ldloc.0 

IL_0008:  newobj instance void DuckProxy__ThirdParty_Saz:: 

    .ctor(class [ThirdParty]Saz) 

IL_000d:  call void Program::Baz(class IFoo) 

IL_0012:  nop 

IL_0013:  ret 

} 

Figure 3.9: CIL Listing of Main method within Figure 3.6 after Transformation 

static void Main() 

{ 

    Saz saz = new Saz(); 

    Baz(new DuckProxy_Saz(saz)); 

} 

Figure 3.10: Listing of Main Method within Figure 3.6 after Transformation (C# Language) 
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MSIL Assembler and reassembled into a binary executable or library.  The code 

can now be ran without error.  All of the run-time overhead of determining duck 

type compatibility and generating wrapper classes has been performed at build-

time.  Any duck compatibility errors are detected at build-time and will not occur 

at run-time.  Since all references to the DuckTyping.Contracts DLL have been 

stripped from the output code it is no longer needed at run-time. 

 

 

Figure 3.11: Bytecode Rewriting Data Flow 
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Chapter 4. Analysis 

4.1. Reliability 

The earlier an error or defect can be detected the more reliable a system 

will be (13) (14).  When an error is detected at compile-time it eliminates any 

possibility of it occurring at run-time.  An error detected at compile-time is much 

easier and less costly to correct than an error discovered at run-time. 

In this subsection, the types of errors that may occur for each of the 

approaches described in the proceeding chapters are explained.  For each 

approach, the timing (run-time versus compile-time) and possibility of the error is 

examined to assess the reliability of each approach. 

4.1.1. Variable Usage Error 

Each variable within a program supports a set of operations.  If the 

programmer specifies an operation that is not supported by the variable an error 

will result.  The reliability of the system is better if these errors can be detected 

during compile-time.  

Techniques that do not detect variable usage errors at compile-time are 

subject to serious reliability issues.  Even an extremely simple error such as a 

typographical error could easily result in a run-time error.  In a large system it is 

quite possible that some of these errors will be missed during testing and affect 

the user.  
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Wrapper Class  

Figure 4.1 shows a program using a wrapper class with an incorrect usage 

of the variable foo.  Within the Baz method the Gar method is called from foo, but 

foo does not support the Gar method.  Compiling this program gives the following 

compile-time error: 

'IFoo' does not contain a definition for 'Gar'  

Dynamic-Context Duck Typing 

Figure 4.2 shows a program using dynamic-context duck typing with an 

incorrect usage of the variable foo.  Within the Baz method the Gar method is 

called from foo, but foo does not support the Gar method.  This program 

compiles successfully despite the incorrect variable usage. 

static class Program { 

    static void Baz(IFoo foo) { foo.Gar(); } 

    static void Main() { 

        Baz(new SazWrapper(new Saz())); 

    } 

} 

Figure 4.1: Incorrect Variable Usage with Wrapper Class (C# Language) 

static class Program { 

    static void Baz(dynamic foo) { foo.Gar(); } 

    static void Main() 

    { 

        Baz(new Saz()); 

    } 

}  

Figure 4.2: Incorrect Variable Usage with Dynamic-Context Duck Typing (C# Language) 
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When the program in Figure 4.2 executes, the following run-time error 

crashes the program: 

'Saz' does not contain a definition for 'Gar' 

Although this is basically the same error as in section 4.1.1, the fact that it 

is delayed until run-time hurts the reliability of software written using dynamic-

context duck typing.  

Static-Context Duck Typing  

Figure 4.3 shows a program using static-context duck typing with an 

incorrect usage of the variable foo.  Within the Baz method the Gar method is 

called from foo.  Baz is passed Saz as its type parameter, but since Saz does not 

have a Gar method the compiler produces the following compile-time error:  

'Gar' : is not a member of 'Saz'  



www.manaraa.com

49 
 

Metaprogramming 

Figure 4.4 shows a program using metaprogramming with an incorrect 

usage of the variable foo.  Within the Baz method the Gar method is called from 

foo, but foo does not support the Gar method.  Compiling this program gives the 

following compile-time error:  

'IFoo' does not contain a definition for 'Gar'  

#include <iostream> 

using namespace std; 

 

class Saz { 

public:  

  void Bar() { cout << "Saz::Bar" << endl; } 

}; 

 

template <typename T> 

void Baz(T &foo) { foo.Gar(); } 

 

int main() { 

  Saz s; 

  Baz(s); 

 

  return 0; 

}  

Figure 4.3: Incorrect Variable Usage with Static-Context Duck Typing (C++ Language) 

static class Program { 

    static void Baz(IFoo foo) { foo.Gar(); } 

    static void Main() { 

        Baz(DuckTyping.Cast<IFoo>(new Saz())); 

    } 

}  

Figure 4.4: Incorrect Variable Usage with Metaprogramming (C# Language) 
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Language Modification 

Figure 4.5 shows a program using the language modification described in 

section 3.1 with an incorrect usage of the variable foo.  Within the Baz method 

the Gar method is called from foo, but foo does not support the Gar method.  

Although a compiler implementing this approach has not been created, it would 

produce something like the following compile-time error:  

'IFoo' does not contain a definition for 'Gar'  

Bytecode Rewriting 

Figure 4.6 shows a program using bytecode rewriting with an incorrect 

usage of the variable foo.  Within the Baz method the Gar method is called from 

foo, but IFoo does not have a Foo method causing the compiler to produce the 

following compile-time error:  

'IFoo' does not contain a definition for 'Gar'  

static class Program { 

    static void Baz(IFoo foo) { foo.Gar(); } 

    static void Main() { 

        Baz(new Saz() asduck IFoo); 

    } 

}  

Figure 4.5: Incorrect Variable Usage with Language Modification 
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4.1.2. Duck Compatibility Error 

A class is duck compatible with an interface if it implements all members 

defined on the interface.  If a variable treated as a duck does not support the 

interface required by the duck variable, an error will occur.  For dynamic-context 

duck typing the interface is not explicitly defined, but the set of methods called 

from the variable could be considered the interface.  

Duck compatibility errors may be detected at compile-time or run-time.  

Discovering duck incompatibilities at compile-time improves reliability because it 

eliminates a possible run-time error.  A programmer who accidentally supplied an 

incompatible type would see the error during compilation when it can be fixed 

easily.  

Wrapper Class  

Figure 4.7 shows a program with a duck compatibility error.  The 

programmer attempted to pass an instance of Paz to the foo parameter of Baz by 

creating the wrapper class PazWrapper that implements the IFoo interface 

required for foo.  

static class Program { 

    static void Baz(IFoo foo) { foo.Gar(); } 

    static void Main() { 

        var saz = new Saz(); 

        Baz(saz.AsDuck<Saz, IFoo>()); 

    } 

};  

Figure 4.6: Incorrect Variable Usage with Bytecode Rewriting (C# Language) 
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With correctly written wrapper classes, duck incompatibilities manifest 

themselves as wrapper classes that will not compile.  In the case of Figure 4.7, 

attempting to compile results in the following compile-time error:  

'Paz' does not contain a definition for 'Bar' 

occurring within the Bar method within the PazWrapper class.  This should make 

sense as Paz is not duck compatible with IFoo.  

Dynamic-Context Duck Typing 

Figure 4.8 shows a program with a duck compatibility error.  An instance 

of Paz is passed to the Baz method for the foo parameter.  Although the foo 

parameter's type is dynamic and therefore has no explicit interface requirements, 

by looking at the body of the method we can see that Baz requires the object 

passed to foo to support a parameterless Bar method.  Since the program in 

Figure 4.8 uses dynamic-context duck typing, it compiles without error.  

public class Paz { } 

 

class PazWrapper : IFoo { 

    private readonly Paz paz; 

    public PazWrapper(Paz paz) { this.paz = paz; } 

    public void Bar() { this.paz.Bar(); } 

} 

 

static class Program { 

    static void Baz(IFoo foo) { foo.Bar(); } 

    static void Main() { 

        Baz(new PazWrapper(new Paz())); 

    } 

}  

Figure 4.7: Duck Incompatibility with Wrapper Class (C# Language) 
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Since Paz is not duck compatible with the implicit ‘interface’ required by 

Baz, a duck compatibility error will occur and crash the program.  The following 

error occurs at run-time:  

'Paz' does not contain a definition for 'Bar' 

 Static-Context Duck Typing  

Figure 4.9 shows a program using static-context duck typing containing a 

duck compatibility error.  A reference to an instance of Paz is passed to the foo 

parameter of the Baz method.  Although the Baz method is templated to accept a 

foo parameter of any type, since the Bar method is called off from foo, only types 

that support a Bar method are allowed.  Compiling the program in Figure 4.9 

results in the following error message: 

'Bar' : is not a member of 'Paz'  

confirming that with static-context duck typing duck compatibility errors are 

reported at compile-time.  

class Paz { } 

 

static class Program { 

    static void Baz(dynamic foo) { foo.Bar(); } 

    static void Main() { 

        Baz(new Paz()); 

    } 

}  

Figure 4.8: Duck Incompatibility with Dynamic-Context Duck Typing (C# Language) 
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Metaprogramming 

Figure 4.10 shows a program with a duck compatibility error.  An instance 

of Paz is cast to the IFoo interface from Figure 1.1 using the metaprogramming 

library described in section 3.3.1, but Paz does not implement the members of 

IFoo.  This creates a run-time error that crashes the program with the following 

error: 

Duck type does not implement a method named "Bar"  

with compatible parameters and return type.  
 

#include <iostream> 

using namespace std; 

 

class Paz {}; 

 

template <typename T> 

void Baz(T &foo) { foo.Bar(); } 

 

int main() { 

  Paz p; 

  Baz(p); 

 

  return 0; 

}  

Figure 4.9: Duck Incompatibility with Static-Context Duck Typing (C++ Language) 
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Language Modification 

Figure 4.11 shows a program with a duck compatibility error.  An instance 

of Paz is cast using the asduck operator to the IFoo interface with the language 

modification approach described in section 3.1.  Since Paz does not implement 

all the members defined on IFoo it is not duck compatible.  Although an actual 

implementation of the language modification approach was not created, the 

following shows the kind of compile-time error that would be reported if such a 

compiler existed: 

‘Paz’ is not duck compatible with ‘IFoo’ 

public class Paz { } 

 

static class Program { 

    static void Baz(IFoo foo) { foo.Bar(); } 

    static void Main() { 

        Baz(DuckTyping.Cast<IFoo>(new Paz())); 

    } 

}  

Figure 4.10: Duck Incompatibility with Metaprogramming (C# Language) 

public class Paz { } 

 

static class Program { 

    static void Baz(IFoo foo) { foo.Bar(); } 

    static void Main() { 

        Baz(new Paz() asduck IFoo); 

    } 

} 

Figure 4.11: Duck Incompatibility with Language Modification 
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Bytecode Rewriting 

Figure 4.12 shows a program written using the bytecode rewriting 

technique that contains a duck compatibility error.  The program attempts to 

create a duck for an instance of Paz that implements the IFoo interface, but since 

Paz does not implement all the methods in IFoo (namely the Bar method), it is 

not duck compatible with IFoo.  

Although the program in Figure 4.12 will compile, the compiled program is 

immediately sent to the ilrewrite program.  This program determines that Paz is 

not duck compatible with IFoo and reports the following error: 

cannot create duck type for Paz implementing 

interface IFoo  

 

Since this error occurs during the program's overall build process, 

bytecode rewriting detects duck compatibility errors at compile-time.  

public class Paz {} 

 

static class Program 

{ 

    static void Baz(IFoo foo) { foo.Bar(); } 

    static void Main() { 

        var paz = new Paz(); 

        Baz(paz.AsDuck<Paz, IFoo>()); 

    } 

};  

Figure 4.12: Duck Incompatibility with Bytecode Rewriting (C# Language) 
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4.1.3. Logical Type Mismatch 

It is possible for logically unrelated classes to be duck compatible.  In 

Figure 2.8 one such example was presented involving CreditCard and 

Rhinoceros classes both having a Charge method.  Programming languages 

typically require that classes explicitly mark themselves as interface 

implementors to avoid such accidental type compatibility. 

Duck typing provides a mechanism that allows programmers to avoid the 

checks that normally would prevent accidental structural type compatibility.  As 

such there is a potential for reliability issues if a programmer accidentally uses a 

type that, although being duck compatible, is logically unrelated.  So long as the 

programmer is required to explicitly specify when duck type compatibility is 

desired the reliability concerns are largely mitigated.  When duck casts are 

explicit the programmer is more likely to identify accidental compatibility, such as 

with the CreditCard and the Rhinoceros, and the compiler does not need to make 

any assumptions about the intent of the programmer. 

Wrapper Class 

Figure 4.1 shows how the assignment of an instance of Saz to IFoo during 

the call to Baz requires an explicit instantiation of the SazWrapper wrapper class.  

Dynamic-Context Duck Typing  

Figure 4.2 shows how the assignment of an instance of Saz to the foo 

parameter of type dynamic is implicit when using dynamic-context duck typing.  
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Static-Context Duck Typing  

Figure 4.3 shows how the assignment of an instance of Saz to the foo 

parameter of type T is implicit when using static-context duck typing.  

Metaprogramming  

Figure 4.4 shows how the assignment of an instance of Saz to the foo 

parameter is explicit when using metaprogramming.  

Language Modification  

Figure 4.5 shows how the assignment of an instance of Saz to the foo 

parameter of type IFoo requires an explicit asduck cast when using language 

modification.  

Bytecode Rewriting  

Figure 4.6 shows how the assignment of an instance of Saz to the foo 

parameter of type IFoo requires an explicit call to the AsDuck extension method 

providing both the source and destination types.  

4.1.4. Wrapper Class Implementation Error  

Manually written wrapper classes have the potential to be written 

incorrectly, causing reliability problems.  When wrapper classes are generated 

automatically by a library or language, implementation errors are much less 

likely.  If they do occur, fixing them once in the library or language averts the bug 

for all generated wrapper classes.  Figure 2.2 shows an example of a wrapper 

class containing an implementation error.  
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Wrapper class implementation errors are a reliability problem unique to 

wrapper classes.  All other techniques either generate wrapper classes 

automatically or do not use wrapper classes.  

4.1.5. Reliability Summary 

 The language modification and bytecode rewriting techniques have the 

best reliability since they do not suffer from any of the reliability problems 

described in this section. 

4.2. Tooling 

4.2.1. Tooling Based on Static Type Information 

Many software development tools utilize static type information to assist 

the programmer with various activities.  These tools work most reliably and 

predictably when based on static type information.  

A code completion editor is a tool that uses static type information.  It 

provides the programmer with a list of supported operations for a given variable.  

These tools analyze the static type information to determine what options should 

be shown.  If no static type information is available for the variable in question, 

these tools cannot provide any suggestions as any operation could potentially be 

valid.  

Another useful tool that uses static type information is an automatic 

refactoring system.  These systems are able to automatically rename all 

occurrences of a type or operation.  Instead of an error-prone textual find and 
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replace, these tools work symbolically based on static type information.  The 

tools can only locate symbols deterministically when the bindings are static.  

When bindings are dynamic they may be undecidable or ambiguous.  

Tools based on static type information are effective for all techniques 

except dynamic-context duck typing described in section 2.2.1 and static-context 

duck typing described in section 2.2.2.  Tools based on static type information 

are ineffective for dynamic-context duck typing because no static type 

information exists when variables are dynamically typed. 

A few examples show how tools based on static type information are 

ineffective for the static-context duck typing described in section 2.2.2.  In Figure 

4.13, the set of operations allowed on the foo parameter within the Baz method is 

completely undefined.  Since the Baz template is never expanded within the 

program, literally any operation could potentially be valid on foo. 

In Figure 4.14, the Bar method in Baz is statically bound to two Bar 

symbols (the one defined in Saz1 and the other defined in Saz2).  If attempting to 

#include <iostream> 

using namespace std; 

 

template <typename T> 

void Baz(T &foo) { 

  // what operations are legal on foo? 

} 

 

int main() { 

  return 0; 

} 

Figure 4.13: Ineffective Static Type Information (C++ Language) 
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rename Bar from Baz, Saz1, or Saz2 it is unclear what effect this should have on 

the other Bar symbols.  If they are all renamed the rename may be 

unintentionally broad.  If only a single symbol is renamed the program becomes 

invalid. 

4.2.2. Segments/Breaks Existing Tooling 

The primary disadvantage unique to the language modification approach 

from section 3.1 is that it breaks existing tooling and segments the language's 

user community.  This disadvantage is explained fully in section 3.1. 
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4.2.3. Increased Build Time 

Large programs can frequently take a long time to build.  All things being 

equal, a shorter compilation time is obviously preferable.  The dynamic-context 

duck typing and metaprogramming approaches perform the bulk of their 

operations at run-time instead of compile-time.  These approaches are therefore 

preferable for decreasing build times. 

All the other approaches increase build times.  Wrapper classes increase 

the amount of code to compile, static-context duck typing increases the amount 

#include <iostream> 

using namespace std; 

 

class Saz1 { 

public:  

  void Bar() { cout << "Saz1::Bar" << endl; } 

}; 

 

class Saz2 { 

public:  

  void Bar() { cout << "Saz2::Bar" << endl; } 

}; 

 

template <typename T> 

void Baz(T &foo) { foo.Bar(); } 

 

int main() { 

  Saz1 s1; 

  Baz(s1); 

 

  Saz2 s2; 

  Baz(s2); 

 

  return 0; 

} 

Figure 4.14: Ambiguous Rename (C++ Language) 
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of code to compile because of template expansions, language modifications 

increase build times because the amount of work performed by the compiler 

increases, and bytecode rewriting increases build times because the ilrewrite tool 

must run as a post-build operation.  Of these approaches bytecode rewriting is 

likely to take the most time because it requires a separate process to run after 

the build.  Instead of running inside the compiler itself bytecode rewriting must re-

read the compiled software modify it and re-write the modified software. 

Comparing measurements of build times for each of the various 

approaches would not be appropriate.  The primary implementation concern for 

the bytecode rewriting implementation described in section 3.3 was programmer 

efficiency in creating the tool—not its compilation speed.  If the tool was tweaked 

for performance such an evaluation would be meaningful. 

4.2.4. Tooling Summary 

 The dynamic metaprogramming approach has the best tooling support.  

This was the only approach that worked well for all three of the tooling evaluation 

criteria. 

4.3. Maintainability 

More code within any software, especially code that provides no intrinsic 

functionality, is detrimental to maintainability.  This follows simple logic—the 

more code within a system, the more code subject to change during 

maintenance, and the more expensive the maintenance becomes. 



www.manaraa.com

64 
 

Additional code can also affect readability, an important consideration for 

maintainability.  When many statements are required to express a single succinct 

idea a maintainer has much more code to read, increasing the cost of 

maintenance.  When the same template or pattern is repeated because of 

limitations or restrictions within a language the cost of maintenance is increased. 

 Per Type Per Duck Cast 
wrapper class one line per 

interface member 
One statement to instantiate wrapper 

dynamic duck none none 
static duck none none 
metaprogramming none one statement to request duck type 
language 
modification 

none one asduck cast operator 

bytecode rewriting none one statement to call AsDuck method 

 Table 4.1: Maintenance Cost from Lines of Code 

Maintenance costs are very important in software development.  It has 

been estimated that the cost of maintenance can be four times the cost of 

development (15). 

 Table 4.1 shows the additional code required for each approach.  One 

additional statement per duck cast is of little concern to maintainability.  Although 

this does slightly increase the number of lines, it also makes the code more 

readable by explicitly specifying the desired type compatibility. 

The maintenance cost of adding a new wrapper class type for every 

interface and then a line of code for each member defined on that interface is a 

much greater concern.  These classes add a whole new type and many lines of 

code that provide no intrinsic functionality; furthermore each wrapper class 
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expresses the same delegation pattern.  The additional maintenance cost makes 

wrapper classes less maintainable than other approaches. 

4.4. Performance 

Performance can be analyzed both theoretically, by examining the number 

and types of operations required, and empirically, by measuring the real world 

performance.  Theoretical analysis provides a logical framework that should 

explain real world result and is less dependent on a multitude of implementation 

factors.  Empirical performance measurements provide evidence that 

demonstrates the correctness of the logical model, at least under the conditions 

under which the measurements were performed. 

Performance can be measured in terms of both speed and space.  Speed 

is related directly to the number and type of operations that occur at run-time.  

Assuming that each operation takes the same amount of time, the process 

requiring the fewest operations will perform fastest. 

4.4.1. Virtual Method Calls 

Table 4.2 shows the approaches that require an extra virtual method call.  

Approaches that require virtual method calls will incur this run-time overhead 

when calling methods through a duck. 

Although virtual method calls require virtual table lookups at run-time, the 

cost is usually minimal.  In C++ for example, virtual method calls require five 
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more memory references than non-virtual method calls (16).  The run-time 

overhead from an extra virtual method call is likely to be very minimal. 

Approach Required 
wrapper class X 
dynamic duck  
static duck  
metaprogramming X 
language modification X 
bytecode rewriting X 

Table 4.2: Virtual Method Call Requirements 

4.4.2. Call Site Interpretation 

With dynamic-context duck typing each method call will require run-time 

interpretation.  A variable using dynamic type binding using pure interpretation 

typically takes at least ten times longer than the equivalent machine code (17).  

In some implementations, such as the implementation found within .NET, rather 

than pure interpretation, the dynamic type binding is compiled to machine code at 

run-time and cached, so most of the overhead is paid when the code executes 

for the first time with new types rather than for each execution (18). 

This performance issue is unique to dynamic-context duck typing.  None 

of the other approaches require run-time call site interpretation. 

4.4.3. Run-Time Code Generation 

The metaprogramming technique described in section 2.3 requires run-

time code generation.  At run-time the library builds a dynamic module by 

emitting the bytecode instructions and types required to delegate calls off the 

target interface to an instance of the source type.  This module is built in-
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memory.  Creating this module requires inspecting the methods available on the 

source type for compatible calls on the target interface, and then emitting the 

appropriate instructions for delegation.  After the module is built, it is loaded into 

the current process and an instance of the generated wrapper class is created. 

Although this run-time code generation is a fairly expensive process, the 

resulting wrapper classes and dynamic modules can easily be cached, so the 

process is only required once per source/target pair.  When duck types are 

requested and there is a cache hit, the performance overhead is approximately 

that of a hash table search.  This is typically quite fast, although probably slower 

than a virtual method call. 

Run-time code generation is mostly unique to metaprogramming.  The 

other approaches do not require run-time code generation, although the 

dynamic-context duck typing approach may use run-time code generation as an 

optimization technique to avoid the cost of call site interpretation for each 

execution. 

4.4.4. Run-Time Type Checking 

All of the approaches other than dynamic-context duck typing and 

metaprogramming use static type checking.  Static type checking reduces the 

run-time overhead of performing type checking.  Although dynamic-context duck 

typing and metaprogramming both have overhead related to run-time type 

checking they are slightly different. 
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With dynamic-context duck typing the run-time type checking is actually an 

aspect of the call site interpretation from section 4.4.2.  One of the important 

tasks that must be performed during run-time call site interpretation is type 

checking.  Any usage errors are reported during this run-time interpretation. 

With metaprogramming, run-time type checking assures that the source 

and destination types in the duck cast are duck compatible.  This was explained 

in section 4.1.2 with respect to its detrimental affects on reliability, but so to does 

it negatively affect performance.  The source and destination types specified by 

the duck cast must be examined for duck compatibility at run-time.  As described 

in section 4.4.3 the results of this operation can be cached to reduce the 

performance impact for additional duck casts involving the same types. 

4.4.5. Empirical Results 

All empirical measurements were obtained on a machine with the 

specifications shown in Table 4.3.  The programs were written in C# version 4.0 

using the Microsoft C# compiler version 4.0.30319.1 on a release build.  The 

programs were compiled to machine code before execution to avoid the effects 

of the .NET just-in-time bytecode compiler.  Timings were performed by a high-

performance timer with resolution to around 279 nanoseconds. 

Processor Intel Core Duo T2500 at 2.00GHz 
Operating System Windows XP Professional SP 3 
Memory 2.00 GB 

Table 4.3: Test Machine Details 
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Call Performance 

To measure the performance of method calls for each of the approaches a 

simple test program was written.  The program compared a call to a virtual 

method (through an interface), a call to a non-virtual method, a virtual method 

call through a dynamic variable (call site interpretation), a non-virtual method call 

through a dynamic variable (call site interpretation), and a call to a method 

through a wrapper class.  Measurements were made by placing each type of call 

within a loop executing 100 million times.  The timing was done outside this loop, 

using the high performance timer.  The timing of an empty loop was also 

measured so the execution time incurred from the loop itself could be removed.  

Measurements were taken fifty times and the min, max, and mean averages are 

shown in Table 4.4. 
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virtual method 

• mean 4.18 ns  

• min 4.15 ns  

• max 4.24 ns  

non-virtual method 

• mean 3.17 ns  

• min 3.15 ns  

• max 3.22 ns  

dynamic variable to virtual method 

• mean 53.16 ns  

• min 52.95 ns  

• max 54.92 ns  

dynamic variable to non-virtual method 

• mean 53.07 ns  

• min 52.90 ns  

• max 53.48 ns  

call through wrapper 

• mean 6.21 ns  

• min 6.18 ns  

• max 6.30 ns  

Table 4.4: Call Performance 

Metaprogramming 

To measure the performance from the metaprogramming approach, a test 

program was written.  This test program contained one-thousand interface 

definitions similar to the IFoo interface seen in Figure 1.1.  A class like Saz from 

Figure 1.4 was written.  For each of the one-thousand interfaces, a cast from an 

instance of Saz to the interface was performed.  The timing for all of the 1000 

calls was measured using the high-performance timer.  Since the 

metaprogramming library (7) used caching to avoid recomputing duck 

compatibility and regenerating wrapper class libraries for previously encountered 

types, the timing was measured twice.  The first time each of the one-thousand 

types was new and not in the cache.  During the second iteration the type was 
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found in the cache.  These measurements were taken fifty times and the mean 

averages are shown in Table 4.5. 

cache hit 0.037 ms 
cache miss 1.08 ms 

Table 4.5: Metaprogramming Duck Cast Performance 

4.4.6. Performance Summary 

 The C++ static duck typing has the best theoretical performance.  

Language modification, bytecode rewriting, and wrapper classes all have 

excellent performance. 

4.5. Summary 

Table 4.6 provides a summary of the analysis contained within this 

chapter.  Each column shows an evaluation criterion within its evaluation 

category (i.e. Reliability, Tooling, Maintainability, Performance).  Each row 

represents one of the considered approaches.  For each evaluation criterion a 

plus (+) symbol is assigned to a generally positive or beneficial characteristic and 

a negative symbol (−) is assigned to a generally negative or detrimental 

characteristic. 
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 2a 2b 2c 2d 
 i ii iii iv i ii iii i i ii iii iv 
1a + + + − + + − − − + + + 
1b − − − + − + + + + − + − 
1c + + − + − + − + + + + + 
1d + − + + + + + + − + − − 
1e + + + + + − − + − + + + 
1f + + + + + + − + − + + + 

Table 4.6: Analysis Summary

1. Approaches  
a. Wrapper Class (section 2.1) 
b. Dynamic-Context Duck Typing 

(section 2.2.1) 
c. Static-Context Duck Typing (section 

2.2.2) 
d. Metaprogramming (section 2.3) 
e. Language Modification (section 3.1) 
f. Bytecode Rewriting (section 3.2) 

2. Evaluation 
a. Reliability 

i. Variable Usage Error 

+ Detected at Compile-Time 

− Detected at Run-Time 
ii. Duck Compatibility Error 

+ Detected at Compile-Time 

− Detected at Run-Time 
iii. Logical Type Mismatch 

+ Requires Explicit Cast or Wrapper 
Class 

− Happens Implicitly 
iv. Wrapper Class Implementation 

Error 

+ Unlikely (handled by tool) or Not 
Applicable 

− Possible (handled by programmer) 
b. Tooling 

i. Tooling Based on Static Type 
Information 

+ Effective 

− Ineffective 
ii. Segments/Breaks Existing Tooling 

+ No 

− Yes 
iii. Increases Build Time 

+ No 

− Yes 
c. Maintainability 

i. Wrapper Class Maintenance 

+ Not Required 

− Required 
d. Performance 

i. Virtual Method Call 

+ Not Required 

− Required 
ii. Call Site Interpretation 

+ Not Required 

− Required 
iii. Run-Time Code Generation 

+ Not Required 

− Required 
iv. Run-Time Type Checking 

+ Not Required 

− Required 
 

As can be seen in Table 4.6, bytecode rewriting has the most advantages 

and fewest disadvantages. 
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Chapter 5. Findings 

5.1. Conclusions 

5.1.1. Reliability 

The analysis shows that the approaches described in the design are better 

for reliability.  The two approaches described in the design were the only 

approaches able to detect all of the reliability errors described in section 4.1 at 

compile-time. 

For most applications reliability is a very important concern.  Good 

reliability is always a concern for software, whereas performance is primarily a 

concern only when the software is unacceptably slow. 

5.1.2. Maintainability 

The only approach that had serious maintainability issues was wrapper 

classes.  All other approaches including those described in the design did not 

suffer from the maintainability problems caused by wrapper classes. 

5.1.3. Tooling 

The metaprogramming approach described in section 2.3 is the best 

approach in terms of the tooling criteria considered.  Wrapper classes and 

bytecode rewriting both have excellent tooling support with their only downside 

being increased build times.  The increase in build time from wrapper classes is 

likely to be less than the increase from the metaprogramming approach. 
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Although the metaprogramming approach is better than wrapper classes 

and bytecode rewriting in terms of tooling alone, it is extremely unlikely that build 

speeds are more important than reliability. 

Bytecode rewriting is also compatible with a hybrid approach combining the 

fast build times enjoyed by metaprogramming and the excellent reliability found 

with bytecode rewriting.  With this hybrid approach metaprogramming would 

serve as a fallback if the bytecode rewriting post-build step had not been 

performed.  Programmers might choose not to perform the bytecode rewriting for 

every debug build.  The bytecode rewriting could still be performed for release 

builds and on demand. 

5.1.4. Performance 

Theoretically the C++ static duck typing described in section 2.2.2 should 

have the best performance since it does not require virtual method calls, call site 

interpretation, run-time code generation, or run-time type checking.  Since this 

form of static-context duck typing is not supported within the C# language where 

the rest of empirical results were measured, the performance of the approach 

was not measured directly, but it would have call performance equivalent to non-

virtual method calls from Table 5.1. 

Language modification, bytecode rewriting, and wrapper classes all enjoy 

excellent performance.  All of these methods either explicitly or implicitly use 

wrapper classes.  Wrapper classes have a slight performance hit since they 

require one extra virtual method call.  Table 5.1 shows the actual time 



www.manaraa.com

75 
 

measurements for virtual methods.  As can be seen in the table, a virtual method 

call took only 4.18 nanoseconds on the test machine.  Calls to non-virtual 

methods through a wrapper class took 3.04 nanoseconds longer, about twice as 

long as calling the non-virtual method directly.  For most applications the time 

required for the virtual call itself will be an extremely tiny percentage of the 

overall time required by the method. 

virtual method 4.18 ns  
non-virtual method 3.17 ns  
dynamic variable to virtual method 53.16 ns  
dynamic variable to non-virtual method 53.07 ns  
call through wrapper 6.21 ns  

Table 5.1: Call Performance 

The metaprogramming approach has a significant performance impact 

during a duck cast, especially when the wrapper class does not already exist 

within the cache.  Although the performance impact of creating a wrapper for a 

new type is fairly significant, the fact that this only needs to be done once per 

type provides a dramatic speedup.  After the duck creation, each call through the 

duck has the same performance as language modification, bytecode rewriting, 

and wrapper classes.  The performance measurements for duck casting is shown 

in Table 5.2. 

cache hit 0.037 ms 
cache miss 1.08 ms 

Table 5.2: Metaprogramming Duck Cast Performance 

With dynamic-context duck typing using dynamic variables there is no big 

up front performance hit required for generating a wrapper class, but there is 
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much more overhead for each call through a dynamic variable.  Table 5.1 shows 

the overhead for calls through dynamic variables. 

5.1.5. Overall  

Our original goal was to develop an approach that provides loose coupling 

to third-party libraries without reducing reliability, maintainability, tooling support, 

or performance.  The bytecode rewriting technique described in section 3.2 is the 

best overall technique for achieving this goal.  These findings support our original 

thesis. 

The only downsides to bytecode rewriting were build times and the 

performance impact from an additional virtual method call. 

Although short build times are always desirable, they are usually less of a 

consideration than other issues.  Also as described in the tooling section above, 

a hybrid metaprogramming and bytecode rewriting approach can easily mitigate 

build time issues. 

As for performance the only impact caused by bytecode rewriting was an 

additional virtual method call.  Although virtual method calls are somewhat slower 

than non-virtual method calls, they are still extremely fast.  The performance 

overhead of the bytecode rewriting technique will only be an issue in extreme 

edge cases for which programming languages based on bytecodes are probably 

inappropriate anyway. 

Many of the most widely used programming languages, such as Java, C#, 

and Visual Basic.NET, are based on bytecode systems.  The bytecode rewriting 
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technique enables a reliable, maintainable, productive, and performant means to 

achieve loose coupling to third-party classes within these languages. 

5.2. Future Work 

While the bytecode rewriting technique is designed to be applicable to all 

languages based off bytecodes, it was only implemented for .NET languages.  

Another implementation, perhaps based on the Java Virtual Machine, would help 

to show the generality of this approach. 

The bytecode rewriting tool built for .NET languages could be written for 

better performance.  The implementation described in section 3.3 used existing 

tools based on input and output files.  The rewriter's performance could be 

greatly improved by removing its reliance on these external tools and performing 

its disassembly, transformation, and reassembly in place and in memory.  In 

addition, breaking the dependency on tools within the .NET Framework would 

also allow the tool to work with other .NET implementations, such as Mono.  The 

contracts DLL could also be written to do metaprogramming if the bytecode 

rewriter is not run.  This would greatly reduce the impact of bytecode rewriting's 

build time since the rewriting could be skipped for quick debug builds. 

One of the implementation approaches described in the design section was 

language modification.  As described in section 3.1, this approach is more 

suitable for the standards body in charge of the language then as an extension 

so it was not implemented.  It was suggested that compiler generated classes 

could be the implementation used by the compiler, but perhaps an even better 
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implementation that avoided the run-time cost of wrapper classes could be 

designed using the language modification approach.  Perhaps these approaches 

could be considered for inclusion into popular programming languages. 
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